ECON 217: Section Notes

Week 2

David Sungho Park

January 13-15, 2021

Properties of E(•)

$$E[c] = c$$
 for any constant c

$$E\left[cX\right] =cE\left[X\right]$$

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E\left[X_i\right]$$

$$E[g(X)] = \begin{cases} \sum_{j=1}^{k} g(x_j) f(x_j) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} g(x) f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

Properties of Var(•) and Cov(•,•)

$$Var[cX] = c^2 Var[X]$$

$$StdDev[cX] = |c| StdDev[X]$$

$$Cov(X,c) = 0$$

$$Cov(cX, Y) = cCov(X, Y)$$

$$Cov(X, X) = Var[X]$$

$$Cov(aX + bY, cZ) = acCov(X, Z) + bcCov(Y, Z)$$

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y)$$

For independent random variables $X_1, ..., X_n$ and constants $a_1..., a_n$

$$Var\left[\sum_{i=1}^{n}a_{i}X_{i}
ight] = \sum_{i=1}^{n}a_{i}^{2}Var\left[X_{i}
ight]$$

lan. 13-15, 2020

Examples

$$E(5X + X^2 - 7Y + 8) = 5E(X) + E(X^2) - 7E(Y) + 8$$

$$\begin{split} Var(5X + X^2 - 7Y + 8) &= Var(5X) + Var(X^2) + Var(-7Y) \\ &\quad + 2Cov(5X, X^2) + 2Cov(X^2, -7Y) + 2Cov(5X, -7Y) \\ &= 5^2Var(X) + Var(X^2) + 7^2Var(Y) \\ &\quad + 10Cov(X, X^2) - 14Cov(X^2, Y) - 70Cov(X, Y) \end{split}$$

Some handy examples

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

= $E(XY) - E(X)E(Y)$
 $Var(X) = E[(X - E(X))^{2}]$
= $E(X^{2}) - E(X)^{2}$

Numerical questions

Consider the following joint distribution:

f(x,y)	Y=0	Y=1	Y=2
X=5	0.14	0.07	0.09
X=10	0.02	0.22	0.07
X=12	0.11	0.23	0.05

You can calculate expectations, variances, etc. by hand, but also more easily (less prone to mistakes) in a **spreadsheet**.

Jan. 13-15, 2020