
Problem Set 3

Econ 211C

Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 points

Recall the ARMA(2, 5) process in Problem Set 1:

Y
t

= 1.3Y
t�1 � 0.4Y

t�2 + "
t

+ 0.7"
t�1 + 0.1"

t�3 � 0.5"
t�4 � 0.2"

t�5,

where "
t

⇠ WN(0, 1).

(a) (5 points) What are the exact, finite-sample, one-step forecast coe�cients?

Solution: In the Problem Set 1 we solved for the variance and first five autocovari-

ances, which are reported in the table below.

�0 �1 �2 �3 �4 �5

17.5170 15.9570 12.4010 8.3985 5.0576 3.0155

To compute the exact finite-sample forecast coe�cients with m = 5 observations, we

solve:

�(5,1) =

2

6666664

�0 �1 �2 �3 �4
�1 �0 �1 �2 �3
�2 �1 �0 �1 �2
�3 �2 �1 �0 �1
�4 �3 �2 �1 �0

3

7777775

�1 2

6666664

�1
�2
�3
�4
�5

3

7777775
.

The following R code finds the coe�cients to be the values reported in the table below.

�(5,1)
0 �(5,1)

1 �(5,1)
2 �(5,1)

3 �(5,1)
4

1.771 -1.206 0.4434 -0.2490 0.1519

# Autocovariances

g0 = 17.5170

g1 = 15.9570

g2 = 12.4010

g3 = 8.3985

g4 = 5.0576

g5 = 3.0155



# Comput the one-step coefficients

gamMat = matrix(c(g0,g1,g2,g3,g4,

g1,g0,g1,g2,g3,

g2,g1,g0,g1,g2,

g3,g2,g1,g0,g1,

g4,g3,g2,g1,g0), ncol=5, byrow=TRUE)

gamVec = c(g1,g2,g3,g4,g5)

beta51 = solve(gamMat)%*%gamVec

(b) (8 points) Simulate N = 105 observations for this process. Starting with Y100, compute

and report one-step forecasts for Y101, . . . , Y105. When computing the forecasts for t � 102,

use your previously computed forecasts as data, rather than the actual values that you

originally simulated.

Solution: The R code below produced the forecasts in the following table.

Ŷ101 Ŷ102 Ŷ103 Ŷ104 Ŷ105

-1.343 -2.045 -2.967 -3.961 -4.730

# Simulate data

N = 105

arCoef = c(1.3,-0.4)

maCoef = c(0.7,0,0.1,-0.5,-0.2)

Y = arima.sim(model=list(ar=arCoef,ma=maCoef),N)

# Compute 5, one-step forecasts

yHat = rev(Y[1:100])

for(i in 1:5){

yHat = c(yHat[1:5]%*%beta51,yHat)

}

(c) (8 points) Repeat part (b) 1000 times. What is the mean squared error of your forecast

for Y105?

Solution: Using the following code, I found the MSE to be 17.10.

nSim = 1000
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sqErrors = rep(0,nSim)

for(j in 1:nSim){

Y = arima.sim(model=list(ar=arCoef,ma=maCoef),N)

yHat = rev(Y[1:100])

for(i in 1:5){

yHat = c(yHat[1:5]%*%beta51,yHat)

}

sqErrors[j] = (yHat[1] - rev(Y)[1])^2

}

mean(sqErrors)

(d) (5 points) What are the exact, finite-sample, five-step forecast coe�cients?

Solution: From Problem Set 1, we know that �
j

= 1.3�
j�1 � 0.4�

j�2 for j � 6. Using

this, we compute the exact finite-sample forecast coe�cients with m = 5 observations

by solving:

�(5) =

2

6666664

�0 �1 �2 �3 �4
�1 �0 �1 �2 �3
�2 �1 �0 �1 �2
�3 �2 �1 �0 �1
�4 �3 �2 �1 �0

3

7777775

�1 2

6666664

�5
�6
�7
�8
�9

3

7777775
.

The following R code finds the coe�cients to be the values reported in the table below.

�(5,5)
0 �(5,5)

1 �(5,5)
2 �(5,5)

3 �(5,5)
4

0.6606 -0.7879 0.3226 0.0108 -0.0147

g6 = 1.3*g5 - 0.4*g4

g7 = 1.3*g6 - 0.4*g5

g8 = 1.3*g7 - 0.4*g6

g9 = 1.3*g8 - 0.4*g7

gamVec5 = c(g5,g6,g7,g8,g9)

beta55 = solve(gamMat)%*%gamVec5

(e) (6 points) Compute and report a five-step forecast for Y105.
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Solution: The single forecast is 0.07663, and easily computed by the R command:

yHat105 = rev(Y[96:100])%*%beta55

(f) (6 points) Repeat part (e) 1000 times. What is the mean squared error of your forecast

for Y105?

Solution: Using the following code, I found the MSE to be 16.62.

# Repeat 1000 times

sqErrors2 = rep(0,nSim)

for(j in 1:nSim){

yHat105 = rev(yDatMat[96:100,j])%*%beta55

sqErrors2[j] = (yHat105 - rev(yDatMat[,j])[1])^2

}

MSE2 = mean(sqErrors2)

For the remainder of the problem, assume that you do not know the true coe�cients of the

process, but that you do know that it is an ARMA(2, 5).

(g) (5 points) Use the first 100 observations, {y
t

}100
t=1 to estimate the ARMA(2, 5). What are

the parameter estimates?

Solution: Using the same data that was simulated in part (b), the ARMA(2, 5) esti-

mates (with no intercept) are reported below, with associated R code.

�̂1 �̂2 ✓̂1 ✓̂2 ✓̂3 ✓̂4 ✓̂5 �̂2

1.6487 -0.6685 0.2478 -0.3764 -0.0640 -0.5359 -0.2716 0.9499

# Estimate the ARMA(2,5)

arima(yDat,order=c(2,0,5),include.mean=FALSE)

(h) (5 points) Repeat part (a), using your estimates.

Solution: To start, we need to compute estimates of the ARMA(2, 5) autocovariances.

We can do this by repeating the tedious work (by hand) in Problem Set 1, using the

new, estimated, coe�cients. Alternatively, we can cheat by using the ARMAacf function

in R, which computes the exact ARMA autocovariances for a specified model. My

autocovariance estimates and forecast coe�cients are reported below, along with R
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code.

�̂0 �̂1 �̂2 �̂3 �̂4 �̂5

16.1964 15.1740 13.0199 10.7071 8.6861 7.3487

�(5,1)
0 �(5,1)

1 �(5,1)
2 �(5,1)

3 �(5,1)
4

1.670 -1.089 0.5721 -0.4728 0.2613

# Estimate exact autocorrelations and forecast coefficients

gamVecEst = ARMAacf(ar=armaEst$coef[1:2],ma=armaEst$coef[3:7])[2:6]*var(yDat)

g0Est = var(yDat)

g1Est = gamVecEst[1]

g2Est = gamVecEst[2]

g3Est = gamVecEst[3]

g4Est = gamVecEst[4]

gamMatEst = matrix(c(g0Est,g1Est,g2Est,g3Est,g4Est,

g1Est,g0Est,g1Est,g2Est,g3Est,

g2Est,g1Est,g0Est,g1Est,g2Est,

g3Est,g2Est,g1Est,g0Est,g1Est,

g4Est,g3Est,g2Est,g1Est,g0Est), ncol=5, byrow=TRUE)

beta51Est = solve(gamMatEst)%*%gamVecEst

(i) (5 points) Repeat parts (b) and (c), using the same estimates (without updating) for each

one-step forecast.

Solution: Repeating the forecasting preceedure 10,000 times with the forecast coe�-

cients obtained from the estimated model, I found the MSE to be 18.75. The R code

is below.

# Compute 5 one-step MSE for estimated model, using 10000 reps

nSim = 10000

sqErrors1 = rep(0,nSim)

yDatMat = matrix(0,nrow=N,ncol=nSim)

for(j in 1:nSim){

yDatMat[,j] = arima.sim(model=list(ar=armaEst$coef[1:2],ma=armaEst$coef[3:7]),N)

yHat = rev(yDatMat[1:100,j])

for(i in 1:5){
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yHat = c(yHat[1:5]%*%beta51Est,yHat)

}

sqErrors1[j] = (yHat[1] - rev(yDatMat[,j])[1])^2

}

MSE1Est = mean(sqErrors1)

(j) (7 points) Repeat parts (b) and (c), updating your estimates with each forecast. That is,

compute the forecast for Y101, using estimates obtained from {y
t

}100
t=1, compute the forecast

for Y102 using estimates obtained from {y
t

}100
t=2 and your forecast Ŷ101, etc.

(k) (5 points) Repeat part (d), using your estimates.

Solution: Using the following code, I found the MSE to be 24.25. This took about

10 minutes to run and it appeared that there was an instability in the estimation at

times - the autoregressive component was sometimes estimated to be nonstationary,

when included the forecasted data.

# Compute 5 one-step MSE for estimated model, using 10000 reps, updating coefs

sqErrors1Alt = rep(0,nSim)

for(j in 1:nSim){

yHat = yDatMat[1:100,j]

for(i in 1:5){

armaEst = arima(yHat,order=c(2,0,5),include.mean=FALSE,method=’ML’)

gamVecEst = ARMAacf(ar=armaEst$coef[1:2],ma=armaEst$coef[3:7])[2:6]*var(yHat)

g0Est = var(yHat)

g1Est = gamVecEst[1]

g2Est = gamVecEst[2]

g3Est = gamVecEst[3]

g4Est = gamVecEst[4]

gamMatEst = matrix(c(g0Est,g1Est,g2Est,g3Est,g4Est,

g1Est,g0Est,g1Est,g2Est,g3Est,

g2Est,g1Est,g0Est,g1Est,g2Est,

g3Est,g2Est,g1Est,g0Est,g1Est,

g4Est,g3Est,g2Est,g1Est,g0Est), ncol=5, byrow=TRUE)

beta51Est = solve(gamMatEst)%*%gamVecEst

yHat = c(yHat[1:5]%*%beta51Est,yHat)
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}

sqErrors1Alt[j] = (yHat[1] - rev(yDatMat[,j])[1])^2

}

MSE1EstAlt = mean(sqErrors1Alt)

(l) (5 points) Repeat parts (e) and (f), using the your estimates.

Solution: Using the following R code, I found the five-step MSE of the estimated

ARMA to be 18.30.

# Compute exact finite sample 5-step coefs for estimated ARMA, forecast 10000 times

g6Est = 1.3*g5Est - 0.4*g4Est

g7Est = 1.3*g6Est - 0.4*g5Est

g8Est = 1.3*g7Est - 0.4*g6Est

g9Est = 1.3*g8Est - 0.4*g7Est

gamVec5Est = c(g5Est,g6Est,g7Est,g8Est,g9Est)

beta55Est = solve(gamMatEst)%*%gamVec5Est

sqErrors2Est = rep(0,nSim)

for(j in 1:nSim){

yHat105 = rev(yDatMat[96:100,j])%*%beta55Est

sqErrors2Est[j] = (yHat105 - rev(yDatMat[,j])[1])^2

}

MSE2Est = mean(sqErrors2Est)

Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 points

The file ps3Dat.csv contains data on 1 minute returns and order flow for the EUR/USD

exchange rate on 13 Nov 2013. The first column of the dataset contains a date/time stamp, the

second column reports returns over each minute between 9:30 am and 4:00 pm EST, and the

last column reports order flow for the same minutes. Order flow can be thought of as signed

volume – trades occurring at the lowest o↵er prices are counted as a positive number of traded

contracts during the time interval, and trades occurring at the highest bid prices are counted as

a negative number of traded contracts. Volume, on the other hand, counts all traded contracts

positively, regardless of which side of the order book the transactions take place.

(a) (10 points) Estimate a V AR(2) model for EUR/USD returns and order flow. Write the

equations of the full model, substituting estimated values for the parameters. (Hint: the
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estimation can be done equation by equation).

Solution: The general form of the V AR(2) is

"
R

t

O
t

#
=

"
c
r

c
of

#
+

"
�1
r,1 �1

r,2

�1
of,1 �1

of,2

#"
R

t�1

O
t�1

#

+

"
�2
r,1 �2

r,2

�2
of,1 �2

of,2

#"
R

t�2

O
t�2

#
+

"
"
r,t

"
of,t

#
,

where R represents 1-minute EUR/USD returns and O represents 1-minute EUR/USD

order flow. The following R code estimates each of the individual regressions separately.

# Get the data

dat = read.csv(’ps4Dat.csv’)

rets = dat$Returns

ordFlo = dat$OrderFlow

n = length(rets)

# Estimate VAR(2)

regR = lm(rets[3:n]~rets[2:(n-1)] + rets[1:(n-2)]

+ ordFlo[2:(n-1)] + ordFlo[1:(n-2)])

regOrdFlo = lm(ordFlo[3:n]~rets[2:(n-1)] + rets[1:(n-2)]

+ ordFlo[2:(n-1)] + ordFlo[1:(n-2)])

Using the estimates from R, we have
"

R
t

O
t

#
=

"
8.057e� 06

4.92e+ 00

#
+

"
�5.967e� 03 �1.195e� 07

3.619e+ 04 �1.079e� 01

#"
R

t�1

O
t�1

#

+

"
6.708e� 02 �4.342e� 08

2.830e+ 04 5.419e� 02

#"
R

t�2

O
t�2

#
+

"
"
r,t

"
of,t

#
,

where

⌦ = E ["
t

"0
t

] =

"
5.693e� 08 2.336e� 02

2.336e� 02 1.792e+ 04

#
(1)

and where the estimates of the covariance matrix values are determined by computing

the variances and covariance of the residuals from each regression:
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# Covariance matrix

omega11 = sum(regRets$resid^2)/383

omega22 = sum(regOrdFlo$resid^2)/383

omega12 = sum(regRets$resid*regOrdFlo$resid)/383

omega21 = omega12

Omega = matrix(c(omega11,omega12,omega21,omega22),ncol=2)

(b) (10 points) Rewrite the V AR(2) as a V AR(1), again substituting estimates for parameters.

Solution: The V AR(2) can be recast as a V AR(1) in the following manner:

2

6664

R
t

O
t

R
t�1

O
t�1

3

7775
=

2

6664

8.057e� 06

4.92e+ 00

0

0

3

7775

+

2

6664

�5.967e� 03 �1.195e� 07 6.708e� 02 �4.342e� 08

3.619e+ 04 �1.079e� 01 2.830e+ 04 5.419e� 02

1 0 0 0

0 1 0 0

3

7775

2

6664

R
t�1

O
t�1

R
t�2

O
t�2

3

7775

+

2

6664

"
r,t

"
of,t

0

0

3

7775
,

(c) (10 points) What is the matrix that will orthogonalize the error vector of the V AR(2)?

Solution: Recall from the lecture notes that any matrix H which results in H⌦H 0 =

D, where D is some diagonal matrix, will orthogonalize the error term. That is,

defining a new error u
t

= H"
t

will result in an error term u
t

with diagonal covariance

matrix (i.e. no contemporaneous cross correlations). One example of such a matrix

would be the transpose of the matrix of eigenvectors of ⌦. According to the eigenvalue
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decomposition,

⌦ = T⇤T 0,

where ⇤ is a diagonal matrix of the eigenvalues of ⌦ and T is the matrix of associated

eigenvectors stored as columns. In this case, T 0 = T�1, so that

T 0⌦T = ⇤.

Thus, T 0 is a matrix which will orthogonalize the error term. We find this matrix in R

in the following manner:

# Orthoganlize

eigOut = eigen(Omega)

Lambda = diag(eigOut$values)

Tmat = eigOut$vectors

The resulting matrix is

T 0 =

"
1.303e� 06 1

�1 1.303e� 06

#
.
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