Problem Set 1
Econ 211C

QUESEION L o 25 points
[Hamilton, Exercises 3.1 & 3.8] Consider the following M A(2) process:

Y, = (1+2.4L +0.8L%)z,,

where g, ~ WN(0, 1).

(a) (5 points) Is the process weakly stationary? If so, calculate its autocovariances.

Solution: A finite-order M A process is always stationary. The mean is
E[Y;] =E [(1+24L +0.8L%)g] = 0.

The autocovariances are defined by

Vi =E (Y —p) (Y — )]
=E [(et + 2461 + 0.8c_2)(e¢—j + 2.4e4_1_; + 0.854_9_)]
=E[eier—j + 2415 + 0.8c1_9519—;
+ 246, 1605 +5.76g161—5 + 1.9264 1649
+ 0.8¢081—j + 1.92;_9e4_1_; + 0.64e;_264—2_;]

Thus,
Y0 = E e +5.76e7 | + 0.64e7 ;] = 7.4
v = E[2.4¢e} | +1.92¢7 ,] = 4.32

v =E[0.8¢7 ,] = 0.8
=0,  j=34,....

(b) (10 points) Show that the process is not invertible and find an invertible representation

for the process.

Solution: To prove that the process the is invertible, we need to show that the roots




of the M A(2) lag polynomial
1+24L+08L* =0
lie outside the unit circle. We can factor the polynomial as
1+24L +0.8L* = (1+2L)(1 +0.4L).

The resulting roots are

1

A1

1
:‘—5':|—0.5|<1 and

1

A2

T
| 04| ' ‘

Since one of the roots lies inside the unit circle, the process is not invertible. The

invertible representation of the M A(2) is
Y, = (14+04L)(1+27'L)& = (1 + 0.9L + 0.2L)&,,

where & ~ WN(0,4).

(c) (1

re

0 points) Calculate the autocovariances of the invertible representation. How do these

late to the autocovariances in part (a)?

Solution: Substituting &; for ¢; in the solution for part (a), we find Specifically the

autocovariances are

Yo =4(140.9°+0.2%) =74
71 = 4(0.9+ 0.2 x 0.9) = 4.32
Y2 = 4(0.2) = 0.8

=0,  j=3,4,....

These autocovarinces are equivalent to the autocovariances in part (a).

Question 2

............................................................................. 33 points
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Consider two M A(1) processes that differ only in the sign of their M A coefficient:

le,t =0.61 + &t + 0.958{/,1
3/2715 = 0.61 + Et — O.955t_1

where ¢, ~ WN(0,0 = 0.5). Simulate 1000 instances of 23 observations (¢t = 1,2,...,23) of ¥}

and Y,. For each simulation of {€}#3,, make sure to use the same values to compute Y; and

Y, (i.e. do not simulate different e sequences for the two M A processes). Plot the groups of

time series in two different panels of a single figure: plot all time paths of Y] in the upper panel

and all time paths of Y5 in the lower panel. Set the transparency of each line to 0.2. You will

find the rgb function to be useful in order to pass a color (and transparency value) to the plot

function. Bonus (5 points): Write your code (including plotting) with no loops.

Solution:

# Setup

nSim = 1000

N = 23

mu = 0.61

sigma = 0.5

eps = rnorm(N, O, sigma)
thetal = 0.95

theta2 = -0.95

# Simulate

eps = matrix(rnorm(N*nSim,0,sigma),nrow=N,ncol=nSim)
Y1 = rep(mu,N-1) + eps[2:N,] + thetal*eps[1:(N-1),]
Y2 = rep(mu,N-1) + eps[2:N,] + theta2+*eps[1:(N-1),]

# Plots

par (mfrow=c(2,1))

matplot (1:(N-1),Y1,type=’1’, 1lty=1, col=rgb(0, 0, 1, 0.2), xlab="")
matplot (1:(N-1),Y2,type=’1", 1lty=1, col=rgb(1l, 0, 0, 0.2), xlab="")
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QUESTION 3 . 42 points

Consider the ARM A(2,5) model,
Y;g = 1.33/;5_1 — 0.41/,5_2 + &+ O.?Et_l -+ 0-15t—3 — 0-55t—4 — O.2Et_5,

where e, ~ WN(0,1).
(a) (7 points) Is this ARM A process for Y; weakly stationary?

Solution: The ARM A process is stationary if all of the roots of the charactistic poly-
nomial associated with the AR parameters lie outside the unit circle. The relevent
polynomial is

1—1.32—042* =0,
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which has roots

1.3+ 1.60 — 1.6

zZ1 = 2
0.8

13- 1.69-16 5

2= 0.8 s

Since both roots lie outside of the unit circle, we conclude that the process is stationary.

(b) (7 points) Is this ARM A process for Y; invertible?

Solution: Invertibility is guaranteed if all of the roots of the characteristic polynomial
associated with the M A parameters lie outside the unit circle. Equivalently, by ex-
pressing the process as a vector AR(1) in terms of the lagged innovations, invertibility
is guaranteed if the eigenvalues of the coefficient matrix are all within the unit circle
(this is the same way we would determine stationarity if the process were expressed as
a vector AR(1), in terms of the observed data). Hence, we define

- - ~07 0 —0.1 05 0.2 -
675 Wt
1 0 0 0 0
ci- O 1 0 0 0 0
&= | -2 |, F = and v, = 0 )
t 0O 0 1 0 0
Et—3 0
0O 0 0 1 0
Et—4 0
L . 0 0 0 0 1 | L

where wy = Y; — 1.3Y;_1 + 0.4Y;_5. The ARM A(2,5) process can now be expressed as
§&=F&_; +v.

and invertibility is guaranteed if all of the eigenvalues of F' lie within the unit circle.
Using R, we find that the five eigenvalues of F' have moduli 1.0546, 0.8229, 0.8229,
0.7733 and 0.3621. Since the eigenvalue with largest modulus is outside of the unit

circle, we conclude that the process is not invertible.

(c) (7 points) Calculate the first 5 autocovariances for Y;. Derive a recursive equation that

can be used to compute all subsequent autocovariances.
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Solution: The burden of this exercise falls on computing the first 5 autocovariances;

for j > 4, the process behaves as an AR(2). We thus begin with the following useful

computations:
EYie] = 1
EYiei 1] = 13E[Yi164]+0.7E[e; ] = 2
EYiei o] = 13E[Y,1609] —04E[Y, 95, 5] = 2.2
EYie; 3] = 13E[Y; 16, 3] —04E[Y; 96, 3] +0.1E[e} 5] = 2.16
EYie; 4] = 13E[Y, 16, 4] —04E[Y; 95, 4] —05E[e7 ,] = 1.428
EYie, 5] = 13E[Y, 16, 5] — 04E[Y, 95, 5] —02E[e? ] = 0.7924.

By multiplying the ARM A(2,5) epression with successive lags of Y; and noting that

E[Y,e;] =0 for j > s, we find the first five autocovariances to be

Y% = 13EYY, 1] — 04E[Y}Y; o] + E[Yie,] + 0.7E [Yie,_4]
+0.1E [Yier—3] — 0.5E [Yier—4] — 0.2E [V 5]
= 1.3v; — 0.4y 4 1.74352
71 = 13E[Y?2,]—04E[Y; 1Y, 5] + 0.7TE[Y; 15/ 1]

+0.1E [Y;g_lz’:“t_g] — 0.5E [}/;_1575_4] —0.2E [Y;_ltft_5]

72 = 13E [thlY;eﬂ] —0.4E [Y},QYQ,Q]

—|—01E [Y;g_gfft_g] — 0.5E [}/;_2675_4] —0.2E [Y;g_gc‘ft_5]

= 1.3y, — 0.4y — 1.332
73 = 1.3E [}/}735/272] — 0.4E [Y},gYQ,Q]

+01E [Y;g_g(ft_g] — 0.5E [}/;_3615_4] —0.2E [1/;5_35,5_5]

Y4 = 1.3E [}/15741/1572] — 04E [}/15741/1572] + —0.5E [}/157481574] — 0.2E [}/;5745375]

= 1.3v3 —0.4v —0.9
v = 13E[Y, 5Y; o] — 04E[Y;5Y; o] + —0.2E [V 565
— 1.3y, — 047 — 0.2,

(1)

(2)

(3)

(4)

()

(6)

Using the first three equations, it is simple to solve for the first three autocovariances

of the process, which are reported in the table below. We then use those values in

Page 6




conjunction with Equations (4) — (6) to obtain the three subsequent autocovariances,
which are also reported in the table. Beyond lag 5, Y; is no longer correlated with &,

and hence, the process behaves as an AR(2):

Yo = 1.375-1 — 0.4,_. (7)

Thus, for s > 5, v, is computed by iterating on Equation (7), using the values in the
table below to start the recursions. The first 50 autocovariances are depicted in panel
(a) of the figure below.

Yo 84! 2 V3 Va4 V5
17.5170 15.9570 12.4010 8.3985 5.0576 3.0155

(@ (b)
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(d) (7 points) Calculate and plot the first 50 autocorrelations for Y;.
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(e)

Solution: The first 50 autocorrelations, p;, are computed via the definition p; = ;Y—f)

and are depicted in panel (b) of the figure above.

(7 points) Use R or Python to simulate n = 1000 values of Y;. Do this without using any
specialty time series functions (for example, do not use the arima function in R). What are
the sample mean and variance of your simulation? What are your estimates of the first
five autocovariances? How do these values compare with their theoretical counterparts

computed in part (c)?

Solution: See solution for part (f).

(7 points) Repeat part (e) for n = {10000, 100000, 1000000}. How do your estimates of
mean, variance and first five autocovariances compare with each other and with the true

values that you have already computed?

Solution: The following code simulates the ARMA(2,5) process for different values of

n and computes the means, variance and autocovariances for each simulation.

# Parameters
phi = c(1.3, -0.4)
theta = ¢(1, 0.7, 0, 0.1, -0.5, -0.2)

# Function to simulate and compute moments
prob3Sim = function(nSim, phi, theta){

eps = rnorm(nSim+5)

Y = rep(0,nSim+5)

for(i in 6:length(Y)){

Y[i] = phif*%Y[(i-1):(i-2)] + thetal*%eps[i:(i-5)]
}

Y = Y[-(1:5)]

muHat = signif (mean(Y),4)

gammaHat = signif (acf(Y,plot=FALSE,lag.max=5,type="covariance")$acf[,,1],4)
return(list ("mu’=muHat, ’gamma’=gammaHat))

by
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# Simulate for different N
prob3Sim(1000,phi,theta)
prob3Sim(10000,phi,theta)
prob3Sim (100000, phi,theta)
prob3Sim (1000000, phi,theta)

The resulting estimates are reported in the table below. As n increases, the estimates

are converging to the true values.

~

n f Yo "N Y2 Y3 Va Y5
1000 0.5469 15.49 14.06 10.91 7.467 4.701 3.191
10,000 0.1206 18.18 16.61 13.07 9.116 5.851 3.881

100,000  -0.009310 17.39 15.80 12.22 8.193 4.834 2.788
1,000,000 -0.002353 17.52 15.95 12.39 8.382 5.034 2.987
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