
1 CEF

• Conditional expectation

– E[Yi|Xi = X] =
∫
tfY (t|Xi = X)dt (continuous)

– E[Yi|Xi = X] =
∑
tP (Yi = t|Xi = X) (discrete)

• LIE: E[Yi] = EX [E[Yi|Xi]] (i.e. weighted average of averages)

Proof. Suppose Yi and Xi are continuous and have joint density fX,Y (u, t),

marginal densities gY (t) and gX(u), and conditional distribution of Yi, i.e.

fY (t|Xi = u).

EX [E[Yi|Xi]] =

∫
E[Yi|Xi]gX(u)du

=

∫ [ ∫
tfY (t|Xi = X)dt

]
gX(u) du

=

∫ ∫
tfY (t|Xi = X)gX(u) du dt

=

∫
t

[ ∫
fY (t|Xi = X)gX(u) du

]
dt

=

∫
t

[ ∫
fXY (u, t)du

]
dt

=

∫
t gY (t)dt

= E[Yi].hom

• CEF decomposition property

– We can decompose a random variable Yi into two parts

Yi = E[Yi|Xi] + εi

– Two properties

(1) E[εi|Xi] = 0

(2) Corr(εi, h(Xi)) = 0 for any function h(·)

– CEF is a good summary of the relationship between Xi and Yi as it gives

us the conditional mean.

• Why we would want to use linear regression to estimate CEF

1. Linear CEF theorem

If the CEF is linear, then linear regression of Yi on Xi estimates the

CEF.

Two common cases of linear CEF:

(1) Joint normality of Yi and Xi

⇒ This case has limited empirical relevance, since regressors and

dependent variables are often discrete, while normal distributions

are continuous.

(2) Saturated regression models (i.e. having both main effects and the

interaction terms )

⇒ By having a separate parameter for every possible combination

of values that the set of regressors can take on. E.g., a regression

model with only dummy variables.

2. Best Linear Predictor theorem

The function X ′iβ is the best (i.e. min. MSE) linear predictor of Yi given

Xi.

Proof. β = E[XiX
′
i]
−1E[XiYi] solves the population least squares prob-

lem, i.e. β = arg minbE[(Yi −X ′ib)2]

⇒ Just as the CEF E[Yi|Xi] is the best (i.e. min. MSE) predictor of

Yi given Xi in the class of all functions of Xi, the population regression

function is the best we can do in the class of linear functions.

3. Regression CEF theorem

The function X ′iβ provides the MMSE linear approximation to E[Yi|Xi].

β = E[XiX
′
i]
−1E[XiYi] = arg min

b
E[(E[Yi|Xi]−X ′ib)2]

⇒ Even if the CEF is nonlinear, regression provides the best linear ap-

proximation to it. ⇒ A good way to motivate regression in line with the

effort to describe the essential features of statistical relationships without

necessarily trying to pin them down exactly.
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2 Rubin’s Causal Model

• Treatment effect:

τi = Yi(1)− Yi(0),

⇒ The fundamental problem of causal inference is that we cannot observe

both Yi(0) and Yi(1) for the one individual.

• Average Treatment Effect (ATE):

τ i = E[τi] = E[Yi(1)− Yi(0)] = E[Yi(1)]− E[Yi(0)]

⇒ However, from actually observed we can get only E[Yi|Di = 1] and

E[Yi|Di = 0]. Therefore, we need RCT to calculate the ATE.

• Randomized Controlled Trial (RCT)

Outcome can be expressed in potential outcomes

Yi = DiYi(1) + (1−Di)Yi(0).

Hence,

E[Yi|Di = 1] = E[DiYi(1) + (1−Di)Yi(0)|Di = 1] = E[Yi(1)|Di = 1]

E[Yi|Di = 0] = E[DiYi(1) + (1−Di)Yi(0)|Di = 0] = E[Yi(0)|Di = 0]

In a randomized controlled trial (RCT), the potential outcomes are indepen-

dent of the treatment indicator. That is,

E[Yi(1)|Di = 1] = E[Yi(1)] and E[Yi(0)|Di = 0] = E[Yi(0)].

Now,

τ i = E[Yi(1)]− E[Yi(0)]

= E[Yi(1)|Di = 1]− E[Yi(0)|Di = 0] (by randomization)

= E[Yi|Di = 1]− E[Yi|Di = 0] (by expressing as potential outcomes).

• Selection bias

E[Yi|Di = 1]− E[Yi|Di = 0]︸ ︷︷ ︸
Observed difference

= E[Yi(1)|Di = 1]− E[Yi(0)|Di = 0]

= E[Yi(1)|Di = 1]− E[Yi(0)|Di = 1]︸ ︷︷ ︸
Average treatment effect on the treated

+E[Yi(0)|Di = 1]− E[Yi(0)|Di = 0]︸ ︷︷ ︸
Selection bias

- It is important to look into the data generation process to discuss selection

bias.

• Treatment on the treated (TOT):

τTOT = E[Yi(1)|Di = 1− E[Yi(0)|Di = 1]]

⇒ Heterogeneity of treatment effects

- used when Yi(0) is independent of treatment but Yi(1) is not.

(i.e. E[Yi(0)|Di = 0] = E[Yi(0)|Di = 1] = E[Yi(0)]

but E[Yi(1)|Di = 0] 6= E[Yi(1)|Di = 1])

• Stable Unit Value Treatment Assumption (SUVTA)

Key assumption: no spillovers

“If Di = D′i, then Yi(D) = Yi(D
′),”

where D is a N-length vector of treatment assignments.

⇒ In two different worlds, if the same individual has the same treatment as-

signment, the outcomes are the same, regardless of whether other individuals’

treatments are different or the same.
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3 Cautionary Notes

• Lalonde (1986)

– Applied modern nonexperimental tools and compared them to bench-

mark (unbiased) estimates from RCT.

– All of them failed.

– Two fundamental problems

1. Although assigned randomly, people selected into treatment. ⇒ peo-

ple in two groups are likely to be systematically different).

2. Even in the absence of treatment, those who had earnings below the

cutoff can have mean reversion.

(Note: in such case, controlling for pre-treatment earnings worsens

the problem).

(Note: a typical case is that several different treatments lead to the

same outcomes)

• Freedman (1991)

- Possibilities for Causal Inference

(1) regression usually works but can go wrong

(2) regression sometimes works but not for routine use

(3) regression might work but hasn’t yet

(4) regreesion can’t work

- Freedman presents several problematic papers, but introduces one well-done

piece:

Snow got the correct “counterfactual” since people were not selecting into

treatment but chose the water company before the quality improvement (treat-

ment). Therefore, the treated and control groups look similar.

• Truncation Model

4 Selection on Observables

(aka. uconfoundedness assumption, conditional independence assumption)

• Selection on Observables

(
Yi(1), Yi(0)

)
⊥ Di|Xi

- In words: conditional on observed characteristics (X ′is), selection bias dis-

appears.

- This “weaker” assumption is necessary for justifying causal interpretation

of regression estimates in observational studies, when random assignment

((Yi(1), Yi(0)) ⊥ Di) clearly fails.

- Combined with the overlap assumption (0 < P (Di = 1|Xi) < 1: for any

given Xi, there are both treated and untreated groups so that we can com-

pare them), we refer to it as “strongly ignorable treatment assignment.”

- With SOO, we can have a causal interpretation of “conditional-on-Xi” com-

parisons:

E[Yi|Xi, Di = 1]− E[Yi|Xi, Di = 0] = E[Yi(1)− Yi(0)|Xi]

• What X’s to include

- What covariates should be included in the SOO designs (e.g. OLS, p-score,

matching, nonparametric regression)?

- What covariates do not violate the SOO assumption?

- Don’t include anything being a channel from treatment to outcome (i.e. part

of the causal chain).

e.g. “alcohol tax → (drink alcohol) → fatalities” or “training program →
(computer skills) → earnings”

- Rule of thumb: anything determined (and measured) before treatment as-

signment will be okay.

• Caveat

- SOO very often fails to get the right answer (e.g. Lalonde (1986, NSW),

Kreuger (1993, computers), Arceneaux, Gerber and Green (2006,voters))

- But sometimes SOO is the only option.

- The key is to consider the sources of bias and acknowledge the limitations

of my study.
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5 Regression Adjustment

• To get consistent estimates of the treatment effect, we need two assumptions:

(A1) Selection on Observables

(A2) We know the functional form h(·) of CEF.

⇒ (A2) can be solved with sufficient data. (A1) is more of a problem in

empirical works.

• Multi-category Di (i.e. not binary)

Translating the potential outcome framework into classical linear regression

model:

Yi(0) = α+ εi

Yi(1) = Yi(0) + β + βi (βi = 0 if constant treatment effect)

⇒ Yi = Di · Yi(1) + (1−Di) · Yi(0)

= Di · (Yi(0) + β) + (1−Di) · Yi(0)

= βDi + Yi(0)

= α+ βDi + εi.

Here, we need E[εiDi] = 0 to run OLS, which does not hold in observational

studies.

- So, we instead estimate this regression form

Yi = α+ βDi + δh(Xi) + εi (where h(Xi) = E[Di|Xi]).

By partialing out h(Xi) from Di, we have

Yi = α+ βηi + εi (where ηi = Di − E[Di|Xi]).

To get consistent estimates of β, we need E[εiηi] = 0, which can obtained by

SOO (i.e. “εi ⊥ Di|Xi”).

⇒ The key assumption here is the observable characteristics Xi are the only

reason why εi and Di are correlated.

• Regression adjustment in practice

– Krueger (1993) conducts five robust analyses on treatment effect of com-

puter skills on wage, but they turn out to be WRONG.

The problem is not about functional forms, but not being able to adjust

for omitted variables.

– DiNardo and Pischke (1997) conduct a placebo test by measuring the

treatment effect of pencil usage on wage.

• Heterogeneous treatment effects

Now we have,

Yi(0) = α+ g0(Xi) + εi

Yi(1) = Yi(0) + τ + g1(Xi)︸ ︷︷ ︸
treatment effect

⇒ Yi = Di · Yi(1) + (1−Di) · Yi(0)

= Di ·
(
Yi(0) + τ + g1(Xi)

)
+ (1−Di) · Yi(0)

= α+ τDi + g0(Xi) + g1(Xi)Di + εi

Then,

f1(Xi) = α+ τ + g0(Xi) + g1(Xi) + εi (treatment group)

f0(Xi) = α+ g0(Xi) + εi (control group)

Average treatment effect:

E[Yi(1)− Yi(0)|Xi] = f1(Xi)− f0(Xi)

To estimate this,

τ =
1

N

N∑
i=1

(
DiYi + (1−Di)f̂1(Xi)

)
−
(
(1−Di)Yi +Dif̂0(Xi)

)
⇒ Taking the average of the vertical differences between an observation’s

outcome and its counterfactual (sometimes f̂1(Xi), sometimes f̂0(Xi))
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6 Nonparametric Regression

Although (with SOO assumption) OLS gets us an approximation even when CEF

is not linear, we use nonparametric regression to estimate: for example, E[Yi|Di]

when Di is continuous or E[Di|Xi].

Three flexible ways to estimate a CEF:

1. Series regression (parametric approach)

We want to estimate E[Yi|Xi].

By Taylor approximation around 0 (i.e. Mclauren series), we get the regression

equation

Yi = β0 + β1X + β2X
2 + · · ·+ βpX

p + εi.

⇒ not parsimonious and weird behavior due to high order terms.

Alternative: Spline

Yi = β0+β1Xi+β2X
2
i +β3X

3
i +β41(Xi > K1)(Xi−K1)3+β51(Xi > K2)(Xi−K2)3

- Cubic is the most commonly used.

- Pick the “knots” (K1 and K2) where the third derivative can change.

⇒ parametric approaches cannot fit the data well when the underlying CEF is

not continuous (e.g. E[Di|Xi] ) Alternative is fully nonparametric approach to

estimating CEF.

2. Kernel regression

We want to estimate the pdf f(X).

We can use histograms, but they are jumpy while the pdf is probably smooth.

So, we try the kernel density estimator as a smooth approximation of f(x).

• Kernel density estimator:

f̂h(X) =
1

N

N∑
i=1

hK

(
X −Xi

h

)

where K(·) is the kernel.

⇒ If we use a triangular kernel, we are basically picking a point (indi-

vidual), drawing a triangle, and averaging the heights. (Basically doing

the same things as a histogram.)

• Two things to consider:

1) Kernel choice (doesn’t matter much)

2) Bandwidth choice (more of an issue)If too large, low variance but high bias (undersmooth)

If too small, low bias but high variance (oversmooth)

How to pick h?

(1) Visual inspection: plot f̂h(X) with different bandwidths.

(2) Minimize ISE(X) =
∫ [
f̂h(X)− f(X)

]2
dX

- The problem is that we usually don’t know the true f(x).

- With a big assumption that f(X) is Normal, we can get a

Silverman plug-in. (This can provide a useful start off point for

visual inspection).

(3) Cross validation

CV (h) =
1

N2h

∑
i

∑
j

∫
K

(
Xi −Xj

h
−t
)
K(t)dt− 2

N

∑
i

f̂−i,h(Xi)

where f̂−i,h(Xi) is f̂(·) estimated with observation i dropped. -

A data-driven procedure that is computationally intensive.

• Kernel regression

- We want to estimate f(Y |X) in the “E[Y |X] =
∫
Y f(Y |X)dY ” without

parametric assumptions.

- The conditional density is

f̂h(Y |X) =
f̂h(X,Y )

f̂h(X)

where

f̂h(X,Y ) =
1

Nh2

N∑
i=1

K

(
X −Xi

h
,
Y − Yi
h

)
Note: We can put different bandwidths for X and Y if they have different

variations.
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- Our CEF is basically a weighted average of Yi.

E[Yi|Xi] =

∫
Y f̂h(Y |X)dY =

∑
K

(
X−Xi
h

)
· Yi∑

K

(
Y−Yi
h

) −→ weighted sum

−→ sum of weights

• Potential problems of kernel regression

(1) problems with sparse areas (need h to be adaptive in distance)

(2) sensitive to outliers (instead of average, need to use fitted values

from weighted regression)

(3) poor tail performance

⇒ Lowess can solve these problems.

3. Lowess

1) For each data point Xi, run a weighted regression of Yj on Xj and X2
j

with weight K(Xi, Xj) = 1

(∣∣∣Xi−Xjhi

∣∣∣ < 1

)(
1 −

(
Xi−Xj
hi

< 1
)3
)3

where

hi is the distance to the r-th nearest neighbor.

⇒ Now, r is the tuning factor. (too large r → oversmooth; too small r →
undersmooth.)

2) Let ε̂i = Yi − ̂E[Yi|Xi] (this lets us identify outliers).

Define weight δj = 1
(∣∣ ε̂i

6s

∣∣ < 1
)(

1 −
∣∣ ε̂i

6s

∣∣2)2

where s is the median of ε̂j

(this downweights the outliers).

3) Generate estimates of ̂E[Yi|Xi] for each observation by regressing Yj on

Xj and X2
j with weights δjK(Xi, Xj).

4) Loop over steps 2-3 t times (until δjK(Xi, Xj) stabilizes). On the last

iteration, estimate E[Y |X] at every level of X

⇒ When to use?

• Matching

- Assumption: Selection on observables

- For each treated unit, find a unit or units that are untreated with the same

X.

τ(X) = E[Yi(1)− Yi(0)|Xi = X]

- Matching constructs a valid counterfactual under the SOO assumption.

τ̂m =
1

NT

∑
i∈{Di=1}

[Yi −
∑

j∈{Di=0}

wi(j)Yj︸ ︷︷ ︸
counterfactual

]

where NT is the number of treated units and wi(j) are weights.

- For 1-1 matching, pick wi(j) = 1 for closet control unit.

- If X is higher dimension, use Euclidean space (Xi −Xj)
′(Xi −Xj)

- We would want to use more than one unit to get counterfactual, since this

reduces variance (since larger N) and reduces bias by interpolating.

wi(j) =
K(Xi −Xj)∑
j K(Xi −Xj)
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7 Propensity Score

• Propensity score is the conditional probability of treatment.

P (Xi) = E[Di|Xi]

• Key assumption:

(A1) Yi(0), Yi(1) ⊥ Di|Xi (Selection on observables)

(A2) 0 < P (Di = 1|Xi) < 1 (Overlap)

• Theorem:

If Yi(0), Yi(1) ⊥ Di|Xi, then Yi(0), Yi(1) ⊥ Di|P (Xi)

• Propensity Score Estimation

- Estimate a flexible logit of Di on Xi, X
2
i , and interactions.

- Get predicted values ⇒ p̄(Xi)

- For this to work, we need:

(1) Selections on observable (i.e. correct X’s)

(2) Logit needs to be right (i.e. correct functional form)

• How to use p-score

- Blocking

Split into K blocks and drop the blocks where there are either only treated or

only controlled units (i.e. by imposing (A2) we can force common support).

Get the weighted average of within-block average p-scores by the weight as

the number of observations in that block.

τ̂B =

K∑
k=1

(NT,k +NC,k
N

)
τ̂k

Note: τ̂k is equal to zero when there are only treated or only controlled units.

- Nearest neighbor matching

Pair each treated unit with nearest control unit.

τ̂NN =
1

NT

∑
i∈{Di=1}

(Yi − Yj)

where Yj is the nearest neighbor to Yi.

- Weighting with p-score

Run WLS on Yi = α+Xiβ + τDi + ui with regression weights

wi =

√
Di

p̂(Xi)
+

1−Di

1− p̂(Xi)

• Overlap assess with p-score

- Histograms are useful when we have a single X. However, more than two

covariates make the problem difficult. For example, if we use marginal distri-

butions of f(X1, X2), we might conclude there is shared support when there

is none.

- With p-score, we can reduce the dimension of the problem.

- Fit the logit regression to estimate p(Xi) very flexibly.

- By assessing overlap, we can trim the data. (Large sample is not always

good, especially when a large part of it is just producing bias).
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8 Selection on Unobservables

• Comparison: SOO vs. SOU

Talking in terms of correlation,

- SOO removes all bad variation (i.e. the part of treatment affected by

observable characteristics), leaving all good variation in the treatment. (recall

ηi = Di − E[Di|Xi])

⇒ SOO designs: OLS, propensity score, matching, nonparametric regression

- SOU admits we can’t remove all bad variation in treatment.

- Hence, SOU tend to be much less precise than SOO (esp. evident in IVs),

because we are finding some subset of good variation.

⇒ SOU designs: Instrument variable (IV), Diff-in-Diff (DD), Regression

discontinuity (RD), synthetic control

9 Structural Estimation

- We should be very specific how the world works (e.g. functional form of our

model, distribution assumptions, etc.)

- If the model is correct, it can do good estimation. However, if the belief goes

wrong, it gets really messy.

- It is very sensitive to assumptions
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10 Panel Models

• Panel (or longitudinal) data

- N units and T time periods (usually, N >> T ; when N < T , the problem

turns from identification (i.e. getting correct β) to getting correct s.e.)

- Inference issue: getting correct s.e. (consider “serial correlation”)

- Model:

Yit = X ′itβ + ci + εit

where Xit are (observed) time-variant covariates and ci captures (unobserved)

time-invariant individual effect.

• Key assumptions

(A1) Strict exogeneity

E[εit|Xi1, Xi2, . . . , XiT , Ci] = 0

(A2) Uncorrelated effect

E[ci|Xi1, Xi2, . . . , XiT ] = 0

- In most empirical settings, (A2) is problematic if Xi (e.g. education

attainment) and ci (e.g. personal motivation) are correlated.

- Not a problem if we have randomization.

(A3)

Ω = σ2
εI + σ2

c iT i
′
T

⇒ If (A1) and (A2) hold, use OLS, GLS, or FGLS, since they use all the

variation in X. (A3) is necessary for GLS.

• OLS

- Under (A1) and (A2), OLS estimator is consistent.

- However the s.e. is wrong—typically too small, as OLS assumes indepen-

dence (i.e. homoskedastic errors) within individual across time. (That is, by

taking N ∗ T as the number of observations, OLS assumes there is random-

ization in every t so that there is no correlation across time.)

- Therefore, we use robust (cluster) variance.

• GLS (Random effect) - [check 211A notes!!!]

- Aka. uncorrelated effect in the sense that Xi and ci are uncorrelated.

- More precise than OLS.

- Intuition: taking weighted sums of sample averages and putting more weight

on those with more precision (e.g. inverse of variance as weights). In the

nonpanel context, WLS is a version of GLS.

• Feasible GLS

- Use FGLS when we don’t know structure of var-cov matrix Ω.

- Procedure:

1) Run OLS.

2) Set residuals V̂it = Yi −X ′itβ̂.

3) Set Ω̂ = 1
N

∑N
i=1 V̂iV̂

′
i .

β̂FGLS = (
∑
i

X ′iΩ̂
−1Xi)

−1(
∑
i

X ′iΩ̂
−1Yi)

- β̂FGLS is still consistent but less precise than correctly specified β̂RE , since

Ω̂ might be imprecise. (Note: β̂FGLS = β̂RE , if T = 2).

- This is why we don’t just jump into FGLS, but use RE when structure is

known (since FGLS will be slower getting true).
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11 Fixed Effect

- We use FE when “uncorrelated effect” assumption fails.

• Key assumptions for FE:

(A1) E[εit|Xi1, Xi2, . . . , XiT , Ci] = 0 (strict exogeneity)

(A2) E[εitε
′
it|Xi1, Xi2, . . . , XiT , Ci] = σ2IT (for the sake of mathematic sim-

plicity)

⇒ The idea behind FE is we either control for ci or difference it out.

• FE with dummies

Yit = X ′itβ +R′iC + εit

where Ri is a vector of dummies for each individual.

- Dummies absorb the fixed effect.

- Estimated coefficients on the dummies are not consistent because they use

only T obs.

- This is computationally expensive

• Within estimator

Ÿit = Ẍ ′itβ + ε̈it

where Ÿit = Yit −Xi.

- Regressing deviations in Y (from unit-specific averages) on deviations in X.

- Much faster than FE (with dummies)

• Difference estimator

∆Yit = ∆X ′itβ + ∆εit

- When T = 2, this is identical to FE and within estimators.

- Long differences: measurement error by time, can get less precise but more

unbiased.

• FE vs. RE

- FE is consistent under much weaker assumptions. That is, it doesn’t need

the (typically) implausible assumption of uncorrelated effect.

- FE is much less precise as it uses less variation in X. As we difference much

of it out, we use only time-variant variation in X.

• Between estimator

Y i = X
′
iβ + εi

• RE estimator

β̂RE = F̂W · β̂FE + (1− F̂W ) · β̂B

where

F̂W =
[
SWX′X +

σ2
ε

σ2
ε + σ2

c

· SBX′X
]−1

SWX′X

SWX′X =
∑
i

∑
t

(Xit −Xi)(Xit −Xi)
′

SBX′X =
∑
i

T (Xi −X)(Xi −X)′

- As σ2
c increases (i.e. more correlation in time-invariant ci across periods),

F̂W → 1, or β̂RE → β̂FE

- It σ2
c = 0 (i.e. no individual effect), F̂W =

SW
X′X

SW
X′X+SB

X′X
(the proportion of

variation that is within)

• Measurement error

- With measurement error, the OLS estimator underestimates.

plim(β̂OLS) = β · σ2
X′X

σ2
X′X + σ2

ε

where σ2
ε is the variation of the measurement error.

- For FE estimator,

plim(β̂FE) = plim(β̂∆) =
Cov(∆X,∆Y )

V ar(∆X)

=
Cov(∆X∗ + ∆ε,∆X∗β + ∆u)

V ar(∆X∗ + ∆ε)

= β · σ2
X(1− ρX)

σ2
X(1− ρX) + σ2

ε(1− ρX)

where ρX =
Cov(X∗it,Y

∗
it)

V ar(X∗it)
.

⇒ What we want: σ2
X ↑(more variation in X) and σ2

ε ↓(less m.e.).
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12 Difference in Differences

• When to use?

- Two states: s = 0, s = 1 ⇒ one of them is affected by a policy change

- Two time periods: t = 0 (pre-policy change), t = 1 (post-policy change)

• Key assumption:

E[ε11 − ε10] = E[ε01 − ε00]

where εst is state-time exogenous shock.

⇒ in words: two states must be on similar trajectories

• DD estimator

β̂DD = treatment unit∆− control unit∆

= (Y 11 − Y 10)− (Y 01 − Y 00)

= τ + (ε11 − ε10)− (ε01 − ε00)

Implementation

Yist = α+ τDst + γ11(s = 1) + δ11(t = 1) + εst + uist

• Triple differences (difference in differences in differences)

β̂DDD = [(Y 111 − Y 110)− (Y 101 − Y 100)]− [(Y 011 − Y 010)− (Y 001 − Y 000)]

Implementation

Yista = α+ τDsta + γ11(s = 1) + γ21(t = 1) + γ31(a = 1)

+γ41(s = 1)1(t = 1) + γ51(t = 1)1(a = 1) + γ61(a = 1)1(s = 1) + εsta + uista

where Ysta is the outcome for state s, time t and crop a (e.g. 1 for corn; 0 for

wheat).

.
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13 Synthetic Controls

• When to use?

- One treated unit vs. J potential (synthetic) control units

- T time periods: t = 1, 2, . . . , T0︸ ︷︷ ︸
pretreatment

, T0+1, . . . , T︸ ︷︷ ︸
posttreatment

(The treatment happens between T0 and T0+1)

• Picking weights (w∗)

- Let z1 be a (K + 3) × 1 vector of covariates and outcomes for the treated

unit in pretreatment period

z1 = [X1, Y 1,1, Y 1,T0/2, Y 1,T0︸ ︷︷ ︸
three points of outcome

]′

where X1 is the average of covariates in pretreatment period.

- We take only three points. If we took all the pretreatment outcomes, then

it would be “overfitting.”

- z0 is a (K + 3)× J matrix of possible control units

- We want to find a (J × 1) vector w∗ that minimizes the distance between

z1 and z0. That is,

w∗ = arg min
w

√
(z1 − z0w)′V (z1 − z0w)

• How to match (i.e. picking V )

1) Normalized Euclidean distance

Set V equal to diagonal with each element equal to variance of pre in-

tervention/covariate.

2) Set V equal to variance-covariance matrix of elements in z.

3) Optimize our fit by examining out-of-sample prediction quality.

Choose V that minimizes

(Y p1 − Ŷ
p
0 )′(Y p1 − Ŷ

p
0 )

where Y p1 is a T0×1 vector of pretreatment outcomes and Ŷ p0 = Y p0 W (V )

is a T0 × 1 vector of pretreatment predicted outcomes.

- Procedure: 1) Pick a V . 2) Solve for w. 3) Compute the loss function.

Repeat.

⇒We are basically checking how well our weight performs at least when

we know the correct Y ’s.

Plots

- We can plot the z1 against z0w and visually check how the two fit in

the pretreatment periods.

- By comparing with the placebo test results, we can also make inference

that the estimated gap for our treated unit is sufficiently large relative

to the distribution of gaps for the states in the pool.

⇒ As the hypothesis testing in frequentist inference, we’re looking for

sufficient distance/divergence to reject the null of no treatment effect.

(an example of permutation test)

• Caveats

- The more similarity in controlled units, the better. However, still the prob-

lem is that we have only a single treated unit. This causes a problem in terms

of variance/generalization/precision.

- Synthetic controls are similar to propensity scores/matching. Therefore, any

reservations for them still apply here.
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14 Instrument Variables

• Conditions for IV (+ Exclusion restriction)

(A1) Cov(Di, zi) 6= 0

(i.e. at least there should be some effect of zi on Di).

(A2) Cov(zi, εi) = 0

(i.e. zi is as good as randomly assigned).

(A3) Exclusion restriction

(i.e. zi has no direct effect on Yi;

or zi is uncorrelated with any other determinants of Yi).

- This can fail even with randomization.

- The most attacked point of IV.

- A remedy can be “double blinding”. In some medical research, the

treatment is “blinded” so that the treated individuals don’t act differ-

ently.

• Reduced form (zi → Yi)

- zi is assignment to treatment (in medical literature, it is called “intention

to treat”)

- π̂1 is the difference in Yi between groups with zi = 1 and zi = 0

π̂1 = Y 1 − Y 0

⇒ This substantially underestimate the effect of zi on Yi.

This is because not the whole but only a fraction in group with zi = 1 got the

treatment only because of the treatment assignment.

• First Stage (zi → Di)

- φ̂1 is the fraction of population that got the treatment only because they

were assigned to the treatment (i.e. “compliers”).

φ̂1 = D1 −D0

• IV estimator

zi
φ̂1−−−−−−−−−−→

First stage
Di

β̂IV−−−−−−−−−−→ Yi

zi
π̂1−−−−−−−−−−−−−−−−−−−−−−−−→

Reduced form
Yi

φ̂1 · β̂IV = π̂1 ⇔ β̂IV =
π̂1

φ̂1

Recall β̂IV = (Z ′D)−1(ZY )

• 2SLS

- Used when multiple instruments.

1st stage

Regress

Di = φ0 + φ1zi + ui

and get fitted values

D̂i = φ̂0 + φ̂1zi

2nd stage

Regress

Yi = β0 + β2SLSD̂i + εi

- When single instrument, 2SLS is identical to IV

β̂2SLS =
π̂1

φ̂1

• Local average treatment effect (LATE)

- Recall that IV was developed to deal with hetero. treatment effects. (Treat-

ment effects are typically heterogeneous).

- ATE: avg. treatment effect over entire population

⇒ can be estimated unbiasedly by RCTs

- TOT: avg. treatment effect for those treated

⇒ We need counterfactual, and we can get this only when matching.

- LATE: avg. treatment effect for compliers

⇒ IV is the unbiased estimator

Note: If homogeneous treatment effect, ATE=TOT=LATE.
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• Population breakdown

- Never takers (NT) ⇒ τNT small (or 0)

- Always takers (AT) ⇒ τAT large

- Compliers (C) ⇒ τC mid

- Defiers (D) ⇒ τD negative

Note: if we have randomization, the population proportions for the four groups

are identical between control group and treatment group.

- Compliers are the only people who change the reduced form (other than

defiers; we assume defiers don’t exist). IV gets the treatment effect for com-

pliers.

βIV =
Reduced form

First stage
=
E[Yi(1)− Yi(0)|C] · PC

PC
= E[Yi(1)− Yi(0)|C]

Note: if the PC is very small, we should be concerned (weak instrument).

• Assumptions for IV

1) (SUTVA) If zi = z∗i , then Di(Z) = Di(Z
∗).

(i.e. no spillover effect in compliance with assignment)

2) If zi = z∗i and Di = D∗i , then Y (Z,D) = Y (z∗,D∗).

(i.e. no spillover in treatment effect)

- e.g. easily violated when Di is vaccination

⇒ 1) and 2) are basically independence assumptions (i.e. no general equilib-

rium effects)

3) zi is randomly assigned.

4) (Exculsion restriction) Y (Z,D) = Y (Z′,D) ∀Z,Z′,D
(i.e. zi has no direct effect on Yi)

- potentially the most concerned

5) (covariance assumption) E[Di(1)−Di(0)] 6= 0

(i.e. treatment assignment has some effect on treatment status)

6) (monotonicity assumption) Di(1) ≥ Di(0) ∀i = 1, . . . , N

(i.e. no defiers)

⇒ If there are defiers, the IV estimator becomes a disaster (e.g., PC ≈
PD).

βIV =
τCPC − τDPD
PC − PD

• Multivalued treatments (e.g. still two groups, but ppl taking different amount

of pills)

- Instrument or treatment assignment: zi = 0 or 1. (⇒ Di(0) or Di(1))

- Treatments: Di = 0, 1, . . . , J

- Potential outcomes: Yi(0), Yi(1), . . . , Yi(J)

- IV estimator:

βIV =
E[Yi|zi = 1]− E[Yi|zi = 0]

E[Di|zi = 1]− E[Di|zi = 0]

=

J∑
j=1

wjE[Yi(j)− Yi(j − 1)|Di(1) ≥ j ≥ Di(0)]

where wj ≡
P
[
Di(1)≥j≥Di(0)

]
∑J
j=1 P

[
Di(1)≥j≥Di(0)

]
⇒ By counting each transitions (e.g. 0 to 1 pill, 1 to 2 pills, 2 to 3 pills, ...),

we are taking a weighted sum of treatment effects.

• Multivalued instruments (e.g. assigned the number of pills)

- zi = 0, 1, . . . ,K

- Weighted sum of treatment effects for each transitions

• Weak instruments

(1) If zi has small effect on Di (i.e. weak first stage), this inflates the bias

in the reduced form.

Suppose we have bias in the reduced form (e.g. wealthy families may

pull strings so that their children are more likely to get scholarships).

Then,

plim(p̂i1) = π1 + bias⇒ plim(β̂IV =
π1 + bias

φ1
) = βIV +

bias

φ1

(2) If too many instrument variables, we have overfit in first stage.
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Imagine a situation where we have 100 (slightly) different amounts of schol-

arship offers. In the 2SLS context, we would have overfitting in the first stage

and the second stage would go to OLS.

⇒ this is not a problem in typical applications because we rarely have more

than one instrument.

.
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15 Regression Discontinuity

• Sharp RD design

- Di changes from 0 to 1 when X crosses the threshold c. (“experiment with

full compliance”)

Assumptions

(A1) E[Yi(0)|Xi = X] and E[Yi(1)|Xi = X] are continuous in X.

- To estimate the effect of Di on Yi

τRD = lim
x↓c

E[Yi|Xi = X]− lim
x↑c

E[Yi|Xi = X]

= E[Yi(1)− Yi(0)|Xi = c]

• Fuzzy RD design

- Probability of treatment changes at threshold

Assumptions

(A2) 0 < limx↓c P (Di = 1|Xi = X)− limx↑c P (Di = 1|Xi = X) < 1.

(This assumption ensures we do have a FS and rules out the Sharp RD case.)

(A3) Di(X
∗) is nonincreasing in X∗ at X∗ = c.

(i.e. No defiers.) ⇒ we are thinking in this way because it is often not

reasonable to think that we can manipulate X for a certain individual

- Estimate

τFRD = E[Yi(1)− Yi(0) | unit i is a complier on Xi = c]

⇒ This gives results for a very specific subpopulation (e.g. kids with an IQ

of 135 AND compliers) and thus have external validity issues. That is, it is

difficult to generalize this result to the whole population.

• Before estimation

scatter plots

• RD Estimation

– local linear regression

Choose bandwidth. Fit a linear regression on both side of the threshold.

But this approach has problems related to s.e.

– Thus in practice, we run the regression

Yi = α+ τDi + βL(Xi − c) + βR(Xi − c)Di + ui

for c− h < Xi < c+ h

Note: we are recentering the data to get correct s.e. for τ̂ . Use robust

errors.

• Estimating fuzzy RD

FS : Di = γ0 + γ1zi + γ2(Xi − c) + γ3(Xi − c)zi + ui

RF : Yi = π0 + π1zi + π2(Xi − c) + π3(Xi − c)zi + εi

⇒ τ̂FRD =
π̂1

γ̂1

• Bandwidth choice:

a) visual assess b) cross-validation c) plug in style

make sure to show the robustness to h selection

• Specification testing

Balance type table, McCrary density test
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16 Inference

• Panel clustering (to deal with serial correlation)

- Bertrand, Duflo, and Mullainathan (2004) note that many previous papers

deal with panel data and assume independence within unit.

Suppose we have the bivariate regression of a single unit observed in t time

periods

Yt = α+ βXt + εt

Assume Xt and εt follow AR(1) processes with autocorrelation parameter

λ < 1 and ρ < 1, respectively.

As T → ∞, the ratio of estimated variance (i.e. by default OLS in Stata) to

true variance equals
1− ρλ
1 + ρλ

If λ and ρ are nonzero (i.e. serial correlation), we will get a smaller s.e.

This will lead to over rejection of the null hypothesis.’

Bias also grows as we add more time periods. Therefore, reducing the time

periods can lower the rejection rate.

• Solutions to serial correlation

– TS route - model the AR processes

Transformation of the data by purging the autocorrelation part.

⇒ this doesn’t work because we are unlikely to get the structure rightly

(i.e. dependence over time might be very hard to model.)

– Collapse the data

If the problem was too many time periods, we can collapse the data into

pretreatment and postpreatment.

a) Regress Yst on state FE, year dummies and covariates and collect

residuals Ỹst

b) Regress treatment indicator Dst on state FE, year dummies, and

some covariates and collect residuals D̃st.

c) For the treated states, divide obs. into two groups: pre and post

treatment. (So there are two observations per treated state)

d) Regress Ỹst on D̃st. Then we will get s.e. about the right size.

– Clustered standard errors

We now allow for an arbitrary variance-covariance matrix.

To get reasonable estimates of this, we need G to be large. If G is too

small, the estimate of matrix is poor.

(rule of thumb: G ≥ 50)

Rule of Thumb

- large G and small T: use clustered s.e.

- large G and large T: use clustered s.e.

- small G and large T: collapse the data

- small G and small T: collapse the data (a less challenging version of small

G and large T)

• Randomization Inference (small sample):

- Use when small sample (i.e. asymptotics not possible that we cannot use

CLT or LLN)

- Permutation test (Fisher exact test)

• Bootstrapping

- We want to do inference on θ̂, our parameter of interest (e.g. sample mean)

- What we would like to do is to take S estimates by randomly drawing from

the population and compute

V̂ ar(θ̂) =
1

S − 1

S∑
s=1

(θ̂s − θ̂)2

- However, we typically do not have access to that population.

- Insight: a randomly drawn sample from the population is representative of

the population.

- Procedure: Randomly draw N obs. from the sample with replacement. (If

replacement, we are taking some part of the sample distribution). Repeat this

B times. Then, we have

V̂ ar(θ̂) =
1

1−B

B∑
b=1

(θ̂b − θ̂)2
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– General Procedure

Suppose we have a sample with observations w1, w2, . . . , wN on which

our statistic depends. So, θ̂(w1, w2, . . . , wN ).

1) Draw a sample from w1, w2, . . . , wN with replacement.

Call the sample w∗1 , w
∗
2 , . . . , w

∗
N .

2) Compute θ̂, the statistic of our interest, using the bootstrap sample.

3) Repeat 1) and 2) B times. Then compute V̂ ar(θ̂).

We let θ̂∗ = β̂∗−β̂
s∗
β̂

define our rejection region. (i.e. we are bootstrap-

ping the t statistic)

How large should B be?

- several thousands at least

- try several thousands twice and see if we get the same results.

– Paired bootstrap - draw pairs (Yi, Xi)

- sample individuals keep their Yi and Xi.

The basic idea here is that we assume independence across observations.

.

18



17 Multiple Inference problem

• What if we have multiple outcomes or treatments?

- Suppose we have a series of M hypothesis tests. Assume all the nulls are

true. Then, the probability of falsely rejecting (Type I error) at least one null

hypothesis is

1− (1− 0.05)M ≈ 0.4 (if M = 10)

- We need a measure to generalize such Type I errors.

• False Discovery Rate (FDR)

FDR = E

[
#false rejections

#total rejections

]
= E

[
V

V + U

]
(Note: V is the number of false rejections and U is the number of correct

rejections.)

• Family Wise Error Rate (FWER)

: the probability that at least one of the true J hypotheses is rejected.

FWER = P (V > 0)

(Note: We test M hypotheses and J ≤M of them are true.

• FDR vs. FWER

- If all the nulls are true (i.e. U = 0 and J = M), then FDR = FWER.

FDR = E

[
V

V + U

]
= E

[
V

V + U
|V = 0

]
· P (V = 0) + E

[
V

V + U
|V > 0

]
· P (V > 0)

= E

[
V

V + U
|V > 0

]
· P (V > 0)

= P (V > 0) = FWER (∵ E

[
V

V + U
|V > 0

]
= 1)

- When some of the nulls are false (i.e. J < M), then FDR < FWER

FDR = E

[
V

V + U

]
= E

[
V

V + U
|V = 0

]
· P (V = 0) + E

[
V

V + U
|V > 0

]
· P (V > 0)

= E

[
V

V + U
|V > 0

]
· P (V > 0)

≤ P (V > 0) = FWER (∵ E

[
V

V + U
|V > 0

]
≤ 1)

⇒ So if we are controlling FWER at the 0.05 level we are being more con-

servative than if we are controlling FDR at the 0.05 level. This increases the

chances we will fail to reject null hypothesis that are not true.

• Solutions to Multiple inference problem

1. Reduce the number of tests

- If we have multiple testing on the RHS, we can do a single F-test.

However, in this case, when we reject the joint null, we still don’t know

which treatment matters.

- If we have multiple outcomes, collapse them into a single new variable.

In this case, we need to know the clear directions of effect on each out-

come. Again, when we reject the null that the treatment has no effect

on the aggregate output, we still can’t tell which of the outcomes are

significant.

2. Control FWER

Bonferroni correction

- Divide the significance level by the number of tests

- Very conservative. Very high standard to reject the null.

- We assume all nulls are true.

- Doesn’t allow for the possibility of dependence in outcome

⇒ Limitation: very unlikely to correctly reject the null when it is false.

3. Control FDR

- Begin with the largest
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