Homework 3 Answer Key

Econ 205B, Winter 2017

1. (a) Let the value function be

$$V(\omega_t, m_t) = \max\{U(c_t, m_t) + \beta V(\omega_{t+1}, m_{t+1})\}\$$

subject to

$$\omega_{t+1} = f(k_t) + (1 - \delta)k_t + (1 + r_t)b_t + m_{t+1}$$

and

$$\omega_t - c_t - m_{t+1}(1 + \pi_{t+1}) - b_t - k_t = 0.$$

In this setup, r_t is the real return on bonds. Let λ_t denote the Lagrangian on this last constraint. First order conditions for c_t , m_{t+1} , b_t , and k_t plus the envelope theorem give

$$U_c(c_t, m_t) = \lambda_t$$

$$\beta V_m(\omega_{t+1}, m_{t+1}) + \beta V_\omega(\omega_{t+1}, m_{t+1}) = \lambda_t (1 + \pi_{t+1})$$

$$\beta (1 + r_t) V_\omega(\omega_{t+1}, m_{t+1}) = \lambda_t$$

$$\beta V_\omega(\omega_{t+1}, m_{t+1}) = \lambda_t$$

$$V_m(\omega_t, m_t) = U_m(c_t, m_t).$$

Now combining the second and third of these to obtain

$$\beta V_m(\omega_{t+1}, m_{t+1}) + \beta V_\omega(\omega_{t+1}, m_{t+1}) = \beta (1 + \pi_{t+1})(1 + r_t) V_\omega(\omega_{t+1}, m_{t+1})$$

or

$$\beta V_m(\omega_{t+1}, m_{t+1}) = [(1 + \pi_{t+1})(1 + r_t) - 1]\beta V_\omega(\omega_{t+1}, m_{t+1})$$
$$= i_t \beta V_\omega(\omega_{t+1}, m_{t+1})$$

Hence,

$$\frac{V_m(\omega_{t+1}, m_{t+1})}{V_{\omega}(\omega_{t+1}, m_{t+1})} = i_t.$$

But the last of the first order conditions implies

$$V_m(\omega_{t+1}, m_{t+1}) = U_m(c_{t+1}, m_{t+1})$$

while the first and the fourth yield

$$V_{\omega}(\omega_{t+1}, m_{t+1}) = \lambda_{t+1} = U_c(c_{t+1}, m_{t+1})$$

Thus,

$$\frac{U_m(c_{t+1}, m_{t+1})}{U_c(c_{t+1}, m_{t+1})} = i_t.$$

- (b) In the case considered in class, cash held in time t yielded utility at time t but the opportunity cost was in the lost interest income from the bonds that could otherwise have been held. Since this interest payment occurs in t+1, it must be discounted back to compare to the marginal value from holding money at time t.
- 2. (a) The household's problem is to maximize

$$\sum_{t=0}^{\infty} \beta^t u(C_t^m, C_t^c)$$

for $0 < \beta < 1$, subject to a sequence of CIA constraints of the form, in real terms

$$C_t^m \le \frac{M_{t-1}}{P_t} + \frac{T_t}{P_t} = \frac{m_{t-1}}{\Pi_t} + \tau_t$$

where $m_{t-1} = M_{t-1}/P_{t-1}$, $\Pi_t = P_t/P_{t-1}$ is 1 plus the inflation rate, and $\tau_t = T_t/P_t$, and a sequence of budget constraints of the form, also in real terms,

$$Y_t + \tau_t + \frac{m_{t-1} + I_{t-1}b_{t-1}}{\prod_t} \ge C_t^m + C_t^c + m_t + b_t + k_t$$

where m and b are real cash holdings. Note that real resources available to the representative agent in period t+1 are given by

$$Y_{t+1} + \tau_{t+1} + \frac{m_t + I_t b_t}{\Pi_t}.$$

The period t nominal interest factor I_t divided by Π_{t+1} is the gross real rate of return from period t to t+1 and can be denoted by $R_t \equiv I_t/\Pi_{t+1}$.

(b) Let λ_t and μ_t be the time t Lagrangian multipliers on the budget and CIA constraints respectively. Then the necessary FOC for the two types of consumption are

$$u_{c^m}(t) = \lambda_t + \mu_t$$

$$u_{c^c}(t) = \lambda_t$$

$$\lambda_t = \beta (1 - \delta + f') \lambda_{t+1}$$

$$\lambda_t = \beta \left(\frac{I_t}{\Pi_{t+1}}\right) \lambda_{t+1} = \beta \left(\frac{1 + i_t}{\Pi_{t+1}}\right) \lambda_{t+1}$$

$$\lambda_t = \beta \left(\frac{\lambda_{t+1} + \mu_{t+1}}{\Pi_{t+1}}\right)$$

(c) Subtracting the last FOC from the second-to-last one, we derive

$$\lambda_{t} - \lambda_{t} = \beta \left(\frac{1 + i_{t}}{\Pi_{t+1}} \right) \lambda_{t+1} - \beta \left(\frac{1 + i_{t}}{\Pi_{t+1}} \right) \lambda_{t+1}$$

$$\implies 0 = \beta \left(\frac{i_{t} \lambda_{t+1} - \mu_{t+1}}{\Pi_{t+1}} \right)$$

$$\implies \mu_{t+1} = i_{t} \lambda_{t+1}$$

Hence, the FOC for consumption can be written as

$$u_{c^m}(t) = \lambda_t + \mu_t = \lambda_t (1 + i_{t-1})$$
$$u_{c^c}(t) = \lambda_t$$

which shows that i_{t-1} acts as a tax on C_t^m .

3. (a) Cost minimization problem:

$$\min_{H_{j,t},K_{j,t}} \left[\frac{W_t}{P_t} H_{jt} + \frac{R_t^k}{P_t} K_{jt} \right]$$
s.t.
$$z_t K_{j,t}^{\alpha} H_{j,t}^{1-\alpha} \ge Y_{j,t}$$

Let φ_t be the lagrangian multiplier. Then the FONC for $H_{j,t}$ implies

$$\frac{W_t}{P_t} = \varphi_t (1 - \alpha) \frac{z_t K_{j,t}^{\alpha} H_{j,t}^{1 - \alpha}}{H_{j,t}}$$
$$= \varphi_t (1 - \alpha) z_t \left(\frac{K_{jt}}{H_{jt}}\right)^{\alpha}$$

and the FONC for $K_{j,t}$ implies

$$\frac{R_t^k}{P_t} = \varphi_t \alpha \frac{z_t K_{j,t}^{\alpha} H_{j,t}^{1-\alpha}}{K_{j,t}}$$
$$= \varphi_t \alpha z_t \left(\frac{K_{jt}}{H_{jt}}\right)^{\alpha-1}$$

Using these two equations, we get

$$mc_t = \varphi_t = \frac{1}{z_t \alpha^{\alpha} (1 - \alpha)^{1 - \alpha}} \left(\frac{W_t}{P_t}\right)^{1 - \alpha} \left(\frac{R_t^k}{P_t}\right)^{\alpha}$$

(b) Profit maximization problem:

$$\max_{P_{j,t}} E_t \sum_{i=0}^{\infty} \xi^i \beta^i \lambda_{t+i} \left[\frac{P_{j,t} V_{t,i}}{P_{t+i}} - \varphi_{t+i} \right] Y_{j,t+i}$$

where

$$V_{t,l} = \begin{cases} 1 & \text{if} \quad l = 0\\ \pi_t^{\gamma} \times \dots \times \pi_{t+l-1}^{\gamma} \pi^{(1-\gamma)l} & \text{if} \quad l \ge 0 \end{cases}$$

(c) Plug in the demand function for the intermediate goods:

$$\max_{P_{j,t}} E_t \sum_{i=0}^{\infty} \xi^i \beta^i \lambda_{t+i} \left[\left(\frac{P_{j,t} V_{t,i}}{P_{t+i}} \right)^{1-\theta} - \varphi_{t+i} \left(\frac{P_{j,t} V_{t,i}}{P_{t+i}} \right)^{-\theta} \right] Y_{t+i}$$

The FONC for $P_{j,t} = P_t^*$ is

$$E_t \sum_{i=0}^{\infty} \xi^i \beta^i \lambda_{t+i} \left[(1-\theta) \left(\frac{P_{j,t} V_{t,i}}{P_{t+i}} \right) + \theta \varphi_{t+i} \right] \left(\frac{1}{P_t^*} \right) \left(\frac{P_t^* V_{t,i}}{P_{t+i}} \right)^{-\theta} Y_{t+i} = 0$$

Let $p_t^* \equiv \frac{P_t^*}{P_t}$. Then

$$p_t^* = \frac{\theta}{\theta - 1} \cdot \frac{E_t \sum_{i=0}^{\infty} \xi^i \beta^i \lambda_{t+i} \varphi_{t+i} \left(\frac{P_{t+i}}{P_t V_{t,i}}\right)^{\theta} Y_{t+i}}{E_t \sum_{i=0}^{\infty} \xi^i \beta^i \lambda_{t+i} \left(\frac{P_{t+i}}{P_t V_{t,i}}\right)^{\theta - 1} Y_{t+i})}$$
$$= \frac{\theta}{\theta - 1} \cdot \frac{P_t^n}{P_t^d}$$

Recursively,

$$P_t^n = \lambda_t \varphi_t Y_t + \xi \beta E_t \left(\frac{\pi_{t+1}}{\pi_t^{\gamma} \pi^{1-\gamma}} \right)^{\theta} P_{t+1}^n$$

$$P_t^d = \lambda_t Y_t + \xi \beta E_t \left(\frac{\pi_{t+1}}{\pi_t^{\gamma} \pi^{1-\gamma}} \right)^{\theta-1} P_{t+1}^d$$

Also we have the evolution for the aggregate price index:

$$P_t^{1-\theta} = (1-\xi)(P_t^*)^{1-\theta} + \xi(\pi_{t-1}^{\gamma}\pi^{1-\gamma}P_{t-1})^{1-\theta}$$

which can be rearranged as

$$1 = (1 - \xi)(p_t^*)^{1-\theta} + \xi \left(\frac{\pi_{t-1}^{\gamma} \pi^{1-\gamma}}{\pi_t}\right)^{1-\theta}$$

Log linearizing this equations, we get the NKPC with price indexation:

$$\hat{\pi}_{t} = \beta \cdot \frac{1}{1 + \gamma \beta} E_{t} \hat{\pi}_{t+1} + \frac{\gamma}{1 + \gamma \beta} \hat{\pi}_{t-1} + \frac{(1 - \xi \beta)(1 - \xi)}{\xi (1 + \gamma \beta)} \hat{\varphi}_{t}$$

where when $\gamma = 0$, it reduces to

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \frac{(1 - \xi \beta)(1 - \xi)}{\xi} \hat{\varphi}_t$$

- (d) As γ increases, inflation rate will be more autocorrelated because it depends more on the lagged inflation rate.
- 4. (a) The first order condition for the household's choice of N equates the marginal rate of substitution between leisure and consumption to the real wage, or

$$\frac{\xi N_t^{\eta}}{C_t^{-\sigma}} = w_t.$$

A positive realization of ξ_t increases the disutility of work. For a given real wage and marginal utility of consumption, this reduces the household's desired level of time spent working:

$$\frac{\partial N_t}{\partial \xi_t} = -\left(\frac{N_t}{\eta \xi_t}\right) < 0.$$

This is a partial equilibrium effect as both C_t and we will also adjust.

(b) If we linearize the first order condition with respect to the labor supply and note that $\hat{w}_t = z_t$, we obtain

$$\hat{\xi} + \eta \hat{n}_t + \sigma \hat{c}_t = z_t$$

in a flexible-price equilibrium. With goods market clearing requiring that $\hat{c}_t = \hat{y}_t$, and the production function implying $\hat{y}_t = \hat{n}_t + z_t$, we can write this condition as

$$\hat{\xi} + \eta(\hat{y}_t - z_t) + \sigma \hat{y}_t = z_t \implies \hat{y}_t^f = \frac{(1+\eta)z_t - \hat{\xi}_t}{\sigma + \eta}.$$

(c) Yes. Because a positive ξ_t reduces desired labor supply for a given real wage and marginal utility of consumption, it reduces the output in the flexible-price equilibrium.

(d) This Euler condition was obtained from the condition that

$$\hat{c}_t = E_t \hat{c}_{t+1} - \left(\frac{1}{\sigma}\right) (i_t - E_t \pi_{t+1}),$$

then using the fact that $\hat{c}_t = \hat{y}_t$ to yield

$$\hat{y}_t = E_t \hat{y}_{t+1} - \left(\frac{1}{\sigma}\right) (i_t - E_t \pi_{t+1}).$$

Finally, we added and subtracted current and expected future flexible price output to obtain

$$\hat{y}_t - \hat{y}_t^f = E_t \hat{y}_{t+1} - E_t \hat{y}_{t+1}^f - \left(\frac{1}{\sigma}\right) (i_t - E_t \pi_{t+1}) + E_t \hat{y}_{t+1}^f - \hat{y}_t^f,$$

which shows that

$$r_t^n = \sigma \left(E_t \hat{y}_{t+1}^f - \hat{y}_t^f \right).$$

Expected growth in the flexible-price output level increases r_t^n to induce households to willingly have consumption lower today than in the future. Since r_t^n depends on \hat{y}_t^f , it depends on $\hat{\xi}_t$. Using the results from part (b),

$$r_{t}^{n} = \sigma \left(E_{t} \hat{y}_{t+1}^{f} - \hat{y}_{t}^{f} \right) = \frac{\sigma(1+\eta) \left(E_{t} z_{t+1} - z_{t} \right) - \left(E_{t} \hat{\xi}_{t+1} - \hat{\xi}_{t} \right)}{\sigma + \eta}.$$

If $\hat{\xi}_t$ is an AR(1) process, $\hat{\xi}_{t+1} = \rho_{\xi}\hat{\xi}_t + \epsilon_t^{\xi}$, then the effect of $\hat{\xi}_t$ on r_t^n is given by

$$\left(\frac{\sigma}{\sigma + \eta}\right) (1 - \rho_{\xi}) > 0.$$

A positive $\hat{\xi}_t$ temporarily lowers the flexible price output level at time t relative to its value at t+1. To induce households to reduce current consumption relative to future consumption, the real interest rate must rise.