Final

Econ 205B, Winter 2015

- You have 90 minutes to complete the exam. The maximum points possible is 100.
- No question can be asked during the exam. If you are unsure about the question, state clearly your interpretation and answer appropriately.
- Be concise. Long answers with redundant statements, even if they contain correct answers, will likely be heavily penalized.
- 1. We consider an RBC model with "capitalists" and "workers". A fraction s of the population are capitalists and a fraction 1-s of the population are workers.

The capitalist's problem is to choose c_t^c, h_t^c, i_t^c to maximize the discounted-sum of utility:

$$\max_{c_t^c, h_t^c, i_t^c} E \sum_{t=0}^{\infty} \beta^t u(c_t^c, h_t^c), \qquad 0 < \beta < 1$$

$$s.t. \quad c_t^c + i_t^c \le w_t h_t^c + r_t k_{t-1}^c$$

$$k_t^c = (1 - \delta) k_{t-1}^c + i_t^c$$

and the worker's problem is to choose c_t^w, h_t^w to maximize the discounted-sum of utility:

$$\max_{c_t^w, h_t^w} E \sum_{t=0}^{\infty} \beta^t u(c_t^w, h_t^w), \qquad 0 < \beta < 1$$

$$s.t. \quad c_t^w \le w_t h_t^w$$

Thus, the capitalists have access to investment in capital but workers do not. Both capitalists and workers' utility function are the same:

$$u(c_t, h_t) = \ln c_t - \frac{h_t^{1+\eta}}{1+\eta}$$

The production side is the same as in the baseline RBC model (Perfectly competitive firms with production function $Y_t = z_t K_{t-1}^{\alpha} H_t^{1-\alpha}$ with aggregate technology shock $\ln z_t = \rho \ln z_{t-1} + \epsilon_t$, etc.). The resource constraint is $C_t + I_t = Y_t$.

Finally note that
$$K_t = sK_t^c, H_t = sH_t^c + (1-s)H_t^w, C_t = sC_t^c + (1-s)C_t^w, I_t = sI_t^w$$
.

1

(a) (10 points) Define the recursive competitive equilibrium, including the household's problem and the firm's problem.

- (b) (10 points) State the sequential social planner's problem for this economy.
- (c) (10 points) Derive the equilibrium conditions of this economy.
- (d) (10 points) When there is a positive technology shock, what happens to worker's labor supply? State briefly and explain intuition.
- 2. Consider a money-in-the utility model. Representative household takes prices as given and maximizes

$$E_t \sum_{i=0}^{\infty} \beta^i U(C_{t+i}, m_{t+i}, H_{t+i})$$

subject to the budget constraint

$$P_tC_t + P_tK_t + B_t + M_t = P_tw_tH_t + (r_t + 1 - \delta)P_tK_{t-1} + (1 + i_{t-1})B_{t-1} + M_{t-1} + P_t\tau_t$$

where τ_t are real lump-sum transfers and $m_t = M_t/P_t$. i_t is the nominal interest rate. Assume that the utility function is given by

$$U = \frac{[C_t + m_t]^{1-\sigma}}{1-\sigma} - \frac{H_t^{1+\eta}}{1+\eta}$$

and the production function is given by

$$Y_t = z_t K_{t-1}^{\alpha} H_t^{1-\alpha}$$

where z_t is an AR(1) productivity shock.

- (a) (10 points) Rewrite the budget constraint in real terms.
- (b) (10 points) Derive the equilibrium conditions of this economy.
- (c) (10 points) Is money neutral in this economy? Explain.
- 3. We consider a New Keynesian model with a preference shock. Household's utility is given by

$$E_{t} \sum_{i=0}^{\infty} \beta^{t+i} d_{t+i} \left[\frac{C_{t+i}^{1-\sigma}}{1-\sigma} + \frac{\gamma}{1-b} \left(\frac{M_{t+i}}{P_{t+i}} \right)^{1-b} - \chi \frac{N_{t+i}^{1+\eta}}{1+\eta} \right]$$

where $\ln d_t$ follows an AR(1) process:

$$\ln d_{t+1} = \rho_d \ln d_t + \epsilon_{d,t+1}, \qquad \epsilon_{d,t+1} \sim N(0, \sigma_d^2).$$

The budget constraint is

$$C_t + \frac{M_t}{P_t} + \frac{B_t}{P_t} = \left(\frac{W_t}{P_t}\right) N_t + \frac{M_{t-1}}{P_t} + (1 + i_{t-1}) \left(\frac{B_{t-1}}{P_t}\right) + \Pi_t,$$

where Π_t are profits from intermediate-goods firms.

(a) (5 points) The pricing side of the economy is characterized by

$$\pi_t = \beta E_t \pi_{t+1} + \tilde{\kappa} \hat{\varphi}_t.$$

Explain intuitively the driving force of inflation dynamics according to this equation.

- (b) (15 points) Derive the log-linearized Euler equation and express it in terms of the output gap.
- (c) (5 points) Holding interest rate and expected output and inflation constant, what happens when d_t increases? Explain.
- (d) (5 points) Suppose the monetary policy is given by

$$\hat{i}_t = \delta \pi_t + v_t$$

where $\delta > 1$ and v_t is a monetary policy shock. What happens to output and inflation when v_t increases? Explain.