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Sample Answers for Problem Set 2

1. a) Ans: We have the linearized solution from Problem Set 1. The steady state, (k∗, c∗) , is given by

1 = β (1 +Af ′ (k∗)− δ)

and

c∗ = Af (k∗)− δk∗ .

The linearized dynamics are given by

[
ct+1 − ct

kt+1 − kt

]
=

[
β u′(c∗)

u′′(c∗)Af ′′ (k∗) − u′(c∗)
u′′(c∗)Af ′′ (k∗)

−1 ρ

][
ct − c∗

kt − k∗

]
,

and the convergent saddle-path solution is given by

[
ct+1 − c∗

kt+1 − k∗

]
= (k1 − k∗)

[
ρ− λ−
1

]
(1 + λ−)

t
,

where

λ− =
1

2

⎡
⎣(β u′ (c∗)

u′′ (c∗)
Af ′′ (k∗) + ρ

)
−

√(
−β

u′ (c∗)
u′′ (c∗)

Af ′′ (k∗)− ρ

)2

+ 4β
u′ (c∗)
u′′ (c∗)

Af ′′ (k∗)

⎤
⎦ .

The convergent saddle-path solution is written for an initial capital stock, k1 , at time 1 . k1 needs to be

determined. k0 is given at time 0 .

In part d, we will use the slope of the saddle-path solution for t ≥ 1 , which is

ct − c∗

kt − k∗
= ρ− λ− .

b) Ans: The resource identity at time 0 is

Δk1 ≡ k1 − k0 = (A+ΔA)f (k0)− δk0 − c0 .

The economy begins in the steady state for y = Af (k) , (k∗, c∗) , so that k0 = k∗ and 0 = Af (k∗)− δk∗− c∗

, so that

Δk1 = ΔAf (k∗)− (c0 − c∗)



c) Ans: The Euler condition at t = 0 is

u′ (c0) = (1 +Af ′ (k1)− δ)βu′ (c1) .

Linearized this is

u′′ (c∗) (c0 − c∗) = u′′ (c∗) (c1 − c∗) + βu′ (c∗)Af ′′ (k∗) (k1 − k∗)

d) Ans: The three equations we use are the linearized resource identity,

k1 − k∗ = ΔAf (k∗)− (c0 − c∗)

the linearized Euler condition,

c0 − c∗ = (c1 − c∗) + β
u′ (c∗)
u′′ (c∗)

Af ′′ (k∗) (k1 − k∗)

and the stable eigenvector slope,
c1 − c∗

k1 − k∗
= ρ− λ− .

The last equation is used because the optimum coincides with the stable saddle path beginning at date t = 1

. Solving, we get

k1 − k∗ =

[
1

1 + ρ− λ− + β u′(c∗)
u′′(c∗)Af ′′ (k∗)

]
f (k∗)ΔA

c0 − c∗ =

[
ρ− λ− + β u′(c∗)

u′′(c∗)Af ′′ (k∗)

1 + ρ− λ− + β u′(c∗)
u′′(c∗)Af ′′ (k∗)

]
f (k∗)ΔA

and

c1 − c∗ =

[
ρ− λ−

1 + ρ− λ− + β u′(c∗)
u′′(c∗)Af ′′ (k∗)

]
f (k∗)ΔA

We can see that Δk1

ΔA > 0 , c0−c∗
ΔA > 0 and c1−c∗

ΔA > 0 . Checking, we correctly have that Δk1

ΔA + c0−c∗
ΔA =

f (k∗) and that c0 and c1 satisfy the linearized Euler condition,

c0 − c1 = β
u′ (c∗)
u′′ (c∗)

Af ′′ (k∗)Δk1 > 0.

e) Ans: The proper phase diagram shows an upward sloping linear approximation of the saddle path

through the steady state. Mark c0 straight above k0 = k∗ and a point k1 > k∗ . c1 is given by the

point (k1, c1) that lies on the saddle path, and k1 + c0 = (A+ΔA) f (k∗) − δk∗ . The reason the claim

on p. 32 is incorrect is that if the increase in current resources, ΔAf (k∗) , were completely consumed

at t = 0 , the Euler condition would be violated: u′ (c∗ +ΔAf (k∗)) �= u′ (c∗)β (1 +Af ′ (k∗)− δ) because

β (1 +Af ′ (k∗)− δ) = 1 in the steady state.
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2. a) Ans: The planner solves

max
{ct,kt+1}

∞∑
t=0

βt c
1−σ
t − 1

1− σ

subject to

kt+1 = (1 +A− δ) kt − ct ,

the constraints, kt ≥ 0 for all t ≥ 0 and the initial condition that k0 is given.

To solve, set up the Lagrangian,

L =

[ ∞∑
t=0

βt c
1−σ
t − 1

1− σ
+ λt ((1 +A− δ) kt − ct − kt+1)

]

and find the first-order conditions,

βtc−σ
t = λt ,

λt+1 = (1 +A− δ)λt

and

kt+1 = (1 +A− δ) kt − ct ,

plus the transversality condition,

lim
t→∞λtkt+1 = 0.

We also have the constraints, kt ≥ 0 and ct ≥ 0 for all t ≥ 0 .

The solutions are found through the steps:

c−σ
t = β (1 +A− δ) c−σ

t+1 ⇒ ct+1 = β
1
σ (1 +A− δ)

1
σ ct

which together with

kt+1 = (1 +A− δ) kt − ct

gives the dynamics [
ct+1

kt+1

]
=

[
β

1
σ (1 +A− δ)

1
σ 0

−1 (1 +A− δ)

][
ct

kt

]
.

The eigenvalues are

λ1 = β
1
σ (1 +A− δ)

1
σ and λ2 = 1 +A− δ

and the associated eigenvectors are

ν1 =

[
λ2 − λ1

1

]
and ν2 =

[
0

1

]
.

The solution that satisfies the transversality condition is

[
ct

kt

]
=

(
β

1
σ (1 +A− δ)

1
σ

)t
[

c0

k0

]
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which you can verify by

lim
t→∞βtc−σ

t kt+1 = lim
t→∞βt

(
β

1
σ (1 +A− δ)

1
σ

)−σt

c−σ
0

(
β

1
σ (1 +A− δ)

1
σ

)t+1

k0

= c−σ
0 k0 lim

t→∞βt (β (1 +A− δ))
−t

(
β

1
σ (1 +A− δ)

1
σ

)t+1

= c−σ
0 (1 +A− δ) k0 lim

t→∞

(
β

1
σ (1 +A− δ)

1
σ−1

)t+1

= 0

as long as β
1
σ (1 +A− δ)

1
σ−1

< 1 .

We could solve for this differently (and equivalently) solving forward the Euler condition and the resource

identity as

ct =
[
β

1
σ (1 +A− δ)

1
σ

]t
c0 ,

lim
T→∞

(1 +A− δ)
−T

kT+1 − k0 = −
∞∑
t=0

(1 +A− δ)
−t

ct .

The transversality condition,

lim
t→∞βtc−σ

t kt+1 = 0

implies

lim
t→∞βtc−σ

0 (β (1 +A− δ))
−t

kt+1 = 0 ⇒ c−σ
0 lim

t→∞ (1 +A− δ)
−t

kt+1 = 0

so that limT→∞ (1 +A− δ)
−T

kT+1 = 0 and

k0 =

∞∑
t=0

(1 +A− δ)
−t

ct

=

∞∑
t=0

(1 +A− δ)
−t

[
β

1
σ (1 +A− δ)

1
σ

]t
c0

=
1

1−
[
β

1
σ (1 +A− δ)

1
σ−1

]c0

when the series
∑∞

t=0 (1 +A− δ)
−t

[
β

1
σ (1 +A− δ)

1
σ

]t
converges which requires that β

1
σ (1 +A− δ)

1
σ−1

< 1

.

b) Ans: The condition is derived just above:

β
1
σ (1 +A− δ)

1
σ−1

< 1

which can be rearranged to

1 +A− δ − β
1
σ (1 +A− δ)

1
σ > 0

which implies λ1 < λ2 . This is the condition for the transversality condition to be satisfied for c0 > 0 given

k0 > 0 . It is also the necessary condition for the intertemporal resource constraint to be satisfied as shown

at the end of the answer to part a.
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c) Ans: Household utility in the optimum is given by

∞∑
t=0

βt c
1−σ
t − 1

1− σ
=

∞∑
t=0

βt

[
β

1
σ (1 +A− δ)

1
σ

](1−σ)t

c1−σ
0 − 1

1− σ

=
c1−σ
0

1− σ

∞∑
t=0

βt
[
β

1
σ (1 +A− δ)

1
σ

](1−σ)t

− 1

1− σ

∞∑
t=0

βt

=
c1−σ
0

1− σ

(
1− β

1
σ (1 +A− δ)

1−σ
σ

)−1

− 1

1− σ

1

1− β
,

where the series converges if

1− β
1
σ (1 +A− δ)

1−σ
σ > 0

which can be rewritten as the same condition as in the answer to part b,

A− δ + 1− β
1
σ (1 +A− δ)

1
σ > 0.

3. Ans: a) The problem for finding the command optimum is

max
{ct,�t,nt,kt+1}∞

t−0

∞∑
t=0

βtu (ct, �t)

subject to the budget identity

kt+1 − kt = Af (kt, nt)− δkt − ct ,

the leisure endowment constraint,

nt + �t ≤ 1 ,

and the non-negativity constraints for labor supply, leisure consumption, and capital,

nt ≥ 0, �t ≥ 0 and kt ≥ 0, for all t ≥ 0 ,

given initial capital k0 .

The necessary conditions for an optimum are derived from the Lagrangian

L =

∞∑
t=0

[
βtu (ct, �t) + λt (Af (kt, nt) + (1− δ) kt − ct − kt+1) + η1t �t + η2t nt + γt (1− nt − �t) + μtkt+1

]
.

We will assume that ∂u(ct,�t)
∂ct

and ∂u(ct,�t)
∂�t

are positive for all ct > 0 and �t > 0 .

The necessary conditions are:

the Euler condition

∂u (ct, �t)

∂ct
= β

(
1 +A

∂f (kt+1, nt+1)

∂kt+1
− δ

)
∂u (ct+1, �t+1)

∂ct+1
,
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the labor-leisure choice first-order condition,

A
∂f (kt, nt)

∂nt

∂u (ct, �t)

∂ct
=

∂u (ct, �t)

∂�t
for 1 > �t > 0 ,

with

A
∂f (kt, nt)

∂nt

∂u (ct, �t)

∂ct
≥ ∂u (ct, �t)

∂�t
for �t = 0 and A

∂f (kt, nt)

∂nt

∂u (ct, �t)

∂ct
≤ ∂u (ct, �t)

∂�t
for �t = 1

(an Inada condition for ∂f(kt,nt)
∂nt

will eliminate the second corner condition), the leisure and labor constraints,

nt + �t ≤ 1, nt ≥ 0 and �t ≥ 0 ,

the resource identity

kt+1 − kt = Af (kt, nt)− δkt − ct ,

the transversality condition,

lim
t→∞βt ∂u (ct, �t)

∂ct
kt+1 = 0 ,

and the inequality constraint, limt→∞ kt+1 ≥ 0 and initial condition, k0 .

b) Ans: The necessary conditions become

ct+1

ct
= β

(
1 +A

∂f (kt+1, nt+1)

∂kt+1
− δ

)
,

the labor-leisure choice first-order condition,

ct
�γt

= A
∂f (kt, nt)

∂nt
for 1 > �t > 0 ,

so that �t > 0 always, and assume limn→0
∂f(k,n)

∂n = ∞ to eliminate nt = 0 , the resource identity is the

same,

kt+1 − kt = Af (kt, nt)− δkt − ct ,

and the transversality condition,

lim
t→∞βt 1

ct
kt+1 = 0 ,

and limt→∞ kt+1 ≥ 0 hold.

c) Ans: The steady state, (k∗, c∗, n∗) is given by

A
∂f (k∗, n∗)

∂k
− δ = ρ ,

Af (k∗, n∗)− δk∗ = c∗

and

c∗ = (1− n∗)γ A
∂f (k∗, n∗)

∂n
.

6



Differentiating we get

A
∂2f (k∗, n∗)

∂k2
dk +A

∂2f (k∗, n∗)
∂k∂n

dn+
∂f (k∗, n∗)

∂k
dA = 0 ,

A
∂f (k∗, n∗)

∂k
dk − δdk +A

∂f (k∗, n∗)
∂n

dn+ f (k∗, n∗) dA = dc

and

dc = (1− n∗)γ
(
∂f (k∗, n∗)

∂n
dA+A

∂2f (k∗, n∗)
∂n2

dn+A
∂2f (k∗, n∗)

∂k∂n
dk

)
− γ (1− n∗)γ−1

A
∂f (k∗, n∗)

∂n
dn .

Substituting first-order conditions to simplify, we can use

A
∂2f (k∗, n∗)

∂k2
dk +A

∂2f (k∗, n∗)
∂k∂n

dn = −ρ+ δ

A
dA ,

ρdk +
c∗

(1− n∗)γ
dn− dc = −f (k∗, n∗) dA

and

(1− n∗)γ
(
A
∂2f (k∗, n∗)

∂n2
dn+A

∂2f (k∗, n∗)
∂k∂n

dk

)
− γ

c∗

1− n∗ dn− dc = −c∗

A
dA

to solve for the three derivatives from

⎡
⎢⎣

dk
dA
dn
dA
dc
dA

⎤
⎥⎦ =

⎡
⎢⎢⎣

A∂2f(k∗,n∗)
∂k2 A∂2f(k∗,n∗)

∂k∂n 0

ρ c∗
(1−n∗)γ −1

(1− n∗)γ A∂2f(k∗,n∗)
∂k∂n (1− n∗)γ A∂2f(k∗,n∗)

∂n2 − γ c∗
1−n∗ −1

⎤
⎥⎥⎦
−1 ⎡

⎢⎣
−ρ+δ

A

−f (k∗, n∗)
− c∗

A

⎤
⎥⎦ .

If we use these along with strict concavity of f (k, n) (which requires that ∂2f(k∗,n∗)
∂k2 < 0 , ∂2f(k∗,n∗)

∂n2 > 0

and ∂2f(k∗,n∗)
∂k2

∂2f(k∗,n∗)
∂n2 − (∂2f(k∗,n∗)

∂k∂n

)2
> 0 ) we get what we can surmise from the three undifferentiated

equations and concavity: k∗ rises and/or n∗ falls to keep A∂f(k∗,n∗)
∂k = ρ + δ , c∗ rises with output net of

depreciation, c∗ = Af (k∗, n∗) − δk∗ , and n∗ falls so that the marginal rate of substitution of leisure for

consumption must equal the marginal product of labor. (It is not hard to sign the elements of the inverted

matrix multiplying the negative column vector.)

d) Ans: If the economy begins with capital below steady-state capital, the economy will converge on

a saddle-path stable dynamic path toward the steady state. k is the single pre-determined (that is, state)

variable while both ct and nt are forward looking variables. However, there is only one initial condition, k0

, and one transversality condition,

lim
t→∞βt 1

ct
kt+1 = 0.

We note that labor supply equilibrium,

ct
(1− nt)

γ = A
∂f (kt, nt)

∂nt
,

determines nt as a function of kt and ct only. Thus, we substitute the implicit function nt = φ (kt, ct) into
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the Euler condition and the resource identity to get a two-dimensional dynamical system in k and c . A

unique solution for {kt, ct}∞t=0 will be determined given k0 and the tranversality condition for yt = f (kt , nt)

strictly concave. I did not expect you to do a lot more algebra, but if we do, we will get that ct is rising with

kt . In general, the relationship between leisure consumption (equivalently, labor supply) will depend on the

elasticity of substitution between capital and labor in production compared to the elasticity of substitution

between consumption and leisure. Without a specific production function, you can say that all three converge

monotonically to the steady state from an initial point near the steady state.

4. a) Ans: The two linearized equations derived in the text are

(1− β) (qt − q∗)− βf ′′ (k∗) (kt − k∗) = β (qt+1 − qt) + βf ′′ (k∗) (kt+1 − kt)

k∗ (qt − q∗) = φ (kt+1 − kt) ,

where we use the notation, dqt ≡ qt − q∗ , as before.

All we do is substitute the second into the first to get

qt+1 − qt =

(
ρ− k∗

φ
f ′′ (k∗)

)
(qt − q∗)− f ′′ (k∗) (kt − k∗)

and

kt+1 − kt =
k∗

φ
(qt − q∗)

for the linearized system.

Writing first in matrix form,

[
qt+1 − qt

kt+1 − kt

]
=

[ (
ρ− f ′′(k∗)k∗

φ

)
−f ′′ (k∗)

k∗
φ 0

][
qt − q∗

kt − k∗

]
,

we see that the matrix has a negative determinant, k∗
φ f ′′ (k∗) , so that there are two eigenvalues, one positive

and one negative. The eigenvalues solve

λ± =
1

2

⎛
⎝ρ− k

φ

∗
f ′′ (k∗)±

((
ρ− k∗

φ
f ′′ (k∗)

)2

− 4
k∗

φ
f ′′ (k∗)

)1/2
⎞
⎠ .

One solution is λ− < 0 and the other is λ+ > ρ− f ′′(k∗)k
φ

∗
> 0 . The eigenvectors satisfy

ν± =

[
φ
k∗λ±
1

]
.

The slope of the saddle path that converges to the steady state is negative, and the slope of the divergent

saddle path is positive.

Note that the locus, Δkt+1 = 0 , has zero slope and the locus, Δqt+1 = 0 , has negative slope. The

slope of the (linearized) stable saddle path is between these. This can be seen by comparing the slope of
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Δqt+1 = 0 , dqt
dkt

= f ′′(k∗)
ρ− f′′(k∗)k∗

φ

, to the slope of the saddle path, φ
k∗λ− ,

k∗
φ f ′′ (k∗)

ρ− k∗
φ f ′′ (k∗)

<
1

2

⎛
⎝ρ− k∗

φ
f ′′ (k∗)−

((
ρ− k∗

φ
f ′′ (k∗)

)2

− 4
k∗

φ
f ′′ (k∗)

)1/2
⎞
⎠

To prove the inequality, rearrange and square both sides (remember to reverse the inequality symbol since

each side is a negative number) gives us

(
2

k∗
φ f ′′ (k∗)

ρ− k∗
φ f ′′ (k∗)

−
(
ρ− k∗

φ
f ′′ (k∗)

))2

=

(
ρ− k∗

φ
f ′′ (k∗)

)2

− 4

(
ρ− k∗

φ
f ′′ (k∗)

) k∗
φ f ′′ (k∗)

ρ− k∗
φ f ′′ (k∗)

+ 4

( k∗
φ f ′′ (k∗)

ρ− k∗
φ f ′′ (k∗)

)2

=

(
ρ− k∗

φ
f ′′ (k∗)

)2

− 4
k∗

φ
f ′′ (k∗) + 4

( k∗
φ f ′′ (k∗)

ρ− k∗
φ f ′′ (k∗)

)2

>

(
ρ− k∗

φ
f ′′ (k∗)

)2

− 4
k∗

φ
f ′′ (k∗) .

b) Ans: Rewrite the production function as

yt = Af (kt)

and just assume A = 1 . The steady-state value of q is q∗ = 1 + φδ , and steady-state capital is given by

Af ′ (k∗) = ρ+ δ + φδ

(
ρ+

1

2
δ

)
.

Steady-state q∗ does not change, and the change in k∗ is

dk∗

dA
=

−f ′ (k∗)
Af ′′ (k∗)

> 0.

These shifts in the steady state and the slope of the stable eigenvector tell us that for k0 , q0 rises with

A . As q0 increases, so does i0 reducing consumption c0 .

c) Ans: This is similar to problem 2, but adjustment costs make a significant difference for the response

of investment and consumption to a temporary productivity disturbance. Output at t = 0 rises by Δy0 =

f (k∗)ΔA . Using the resource identity,

ct = Af (kt)− it

(
1 +

φ

2

it
kt

)

and substituting the first-order condition for it , qt = 1 + φ it
kt

, leads to

ct = Af (kt)− kt

(
qt − 1

φ
+

1

2φ
(qt − 1)

2

)
.
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Linearizing this version of the resource identity about the steady state gives

ct − c∗ = f (kt)ΔA+

(
Af ′ (k∗)− q∗ − 1

φ
− 1

2φ
(q∗ − 1)

2

)
(kt − k∗)− k∗

φ
q∗ (qt − q∗) .

After substituting the steady-state values, q∗ = 1 + φδ and Af ′ (k∗) = ρ (1 + φδ) + δ
(
1 + φδ

2

)
, we get

ct − c∗ = f (k∗)ΔA+ ρ (1 + φδ) (kt − k∗)−
(
δ +

1

φ

)
k∗ (qt − q∗) .

This equation shows how the change in consumption and Tobin’s q are related to ΔA at time t when

productivity improves since kt = k∗ is predetermined. That is,

ct − c∗ = f (k∗)ΔA−
(
δ +

1

φ

)
k∗ (qt − q∗) .

Next, we need to modify the equations of motion for k and q at time t to allow for the disturbance to A

at time t . From the original problem, we have the first-order conditions,

u′ (ct)
βu′ (ct+1)

qt = (1− δ) qt+1 +

(
Af ′ (kt+1) +

φ

2

(
it+1

kt+1

)2
)

and

kt+1 = (1− δ) kt + it .

Allowing A to change at time t , and using the approximation in Wickens, the linearized versions of these

become

β (qt+1 − qt) + βAf ′′ (k∗) (kt+1 − k∗) = (1− β) (qt − q∗)− βAf ′′ (k∗) (kt − k∗)− βf ′ (k∗) dA

and

(kt+1 − kt) =
k∗

φ
(qt − q∗) .

Only the first of these equations changes. For future times s > t , the equations of motion are back to the

originals,

β (qs+1 − qs) + βAf ′′ (k∗) (ks+1 − ks) = (1− β) (qs − q∗)− βAf ′′ (k∗) (ks − k∗)

(ks+1 − ks) =
k∗

φ
(qs − q∗) ,

and the optimal solutions for qs and ks converge back to the original steady state along the saddle path

solved in part b, qs − q∗ = φ
k∗λ− (ks − k∗) . Substituting in kt = k∗ , we have that

β (qt+1 − qt) + βAf ′′ (k∗) (kt+1 − k∗) = (1− β) (qt − q∗)− βf ′ (k∗) dA
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and

(kt+1 − k∗) =
k∗

φ
(qt − q∗) .

Along with the linearized resource identity at time t ,

ct − c∗ = f (k∗)ΔA−
(
δ +

1

φ

)
k∗ (qt − q∗) ,

and the saddle-path solution,

qt+1 − q∗ =
φ

k∗
λ− (kt+1 − k∗)

these give us the four conditions needed to solve for qt , qt+1 , kt+1 and ct given the temporary productivity

disturbance ΔA .

The solutions are

qt − q∗ =
f ′ (k∗)

ρ− λ− −Ak∗
φ f ′′ (k∗)

dA ,

(kt+1 − k∗) =
k∗

φ
(qt − q∗) ,

and

ct − c∗ = f (k∗)ΔA− (δ +
1

φ
)k∗ (qt − q∗)

=

[
f (k∗)−

(δ + 1
φ )k

∗f ′ (k∗)

ρ− λ− −Ak∗
φ f ′′ (k∗)

]
ΔA .

Checking signs, we immediately see that qt > q∗ and kt+1 > k∗ , but ct − c∗ cannot be signed from just

looking at the expression. However, a couple substitutions using kt+1 − k∗ = k∗
φ (qt − q∗) and kt+1 − kt =

kt+1 − k∗ = it − δk∗ lead us to δk∗ (qt − q∗) = δφ (it − i∗) . Using this expression, we have

ct − c∗ = f (k∗)ΔA−
(
δ +

1

φ

)
k∗ (qt − q∗)

= f (k∗)ΔA− (1 + δφ) (it − i∗) .

If we evaluate the cost of the rise in investment at time t as a perpetual expense, we get that the cost of

it − i∗ = Δit is δφΔit (that is, the marginal cost of maintaining the capital stock at kt+1 over k∗ ). If the

increase in productivity lasted forever, the net benefit of raising the capital stock permanently to kt+1 would

just be f (k∗)ΔA− (1+ δφ) (it − i∗) . This should be positive. If it were not, then the optimal it − i∗ would

be smaller so that it did hold.
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