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Problem Set 1: Sample answers

1. (a) Ans: Write the Lagrangian as

T
L = Z [ﬁtu (Ct) + A\ ((1 - (S) ki + f (k‘t) —ct — kt+1)]
t=0
and impose the restrictionsthat k.1 > 0 and ¢; > 0 for 7' > t > 0. The necessary conditions are
oL Py oL
— = < > — =
act ﬁ U (Ct) /\t < 0, c >0 and Ct 8Ct 0,
forT >¢t>0,
oL
—~— =1 =0)ki+ f (ki) —ct —key1 =0
o\
forT >t>0,
oL oL
=)\ 1+ 1 (k —6) - <0, ki1 >0 and &k =0,
o 41 (L4 [ (key1) —6) — A\ < t1 T
forT—1>t>0,and
oL oL
==\ <0, k >0 and &k =0.
Dherey 7 <0, T+1 2 T+lakT+1
Making the assumption that lim._,o v’ (¢) = oo and that ky > 0, these become
oL
8_615 =0 = ﬁtu' (Ct) =X >0,
forT >¢t>0,
oL ,
ok =0 = )\t+1 (1+f (ktJrl) —6) —)\t:(),
t+1

foorT'—1>t>0,

ki1 = (1= 08) ke + f (ke) —
forT >¢t>0,and

Atk =0 and  kpy > 0.

These can be simplified to
u () = (1+ f (key1) = 6) Bu’ (crs1)
foorT'—1>t>0,
k1 = (1= 06) ke + f (k) — cu,
forT >t>0,and
BT (er)kry1 =0 and kg > 0.

(b) Ans: The necessary conditions become

u' (cr) = (14 f (keyr) — 6) Bu’ (ceq1)



forall ¢t > 0,
ki1 = (1= 0) ke + f (k) — e,
fordl ¢ > 0, and
Jim 3% (er) bria =0 and - lim kryy > 0.
The only changeisin the range for ¢, hence the limits with respect to T'.
(c) Ans. The steady state satisfies

cey1=c¢ and ki1 =k
Thus, the steady-state values of ¢ and & are determined by
1=06(1+f (k) —0)
and
= f(k*) — ok .
(d) Ans: The dynamics are given by

% =081+ f (kiy1) — 0)
t

and
kip1 = (1—0) ke + f (ke) — s
for al ¢t > 0.

Linearizing these leads to
cer1 — ¢ = Bt [ (k) (ke — k%) + B f7 (K") (K1 — ki)
and
kpir — ke = (f' (k%) = 6) (ke = k) = (et = 7).
Substituting the linearized resource identity (the second equation) into the linearized Euler condition (the

first equation), we get the system of two difference equations,
cep1 — e = Pt f1 (k") B (ke — k) — Be" 7 (k) (e — <)
and
ki1 — ke = p (ke — k%) — (et — ),

where p = 37! — 1. Writing thisin matrix form, the linearized system is

|:Ct+1_ct :| _ [ —ﬁc*f"(k:*) C*f"(]{i*) :| [ ct—c* :|
Fiy1 — ke -1 p ky —k* |7

The eigenvalues satisfy the characteristic polynomial,

A2—0— (/gc*fll (k*) —p))\+,80*f/, (k*) —0.



Theroots are given by
1
e =3 [— (8" " (K°) = p) %A/ (Be 7 (°) = p)? = 4B 7 (k")
one of whichis\_ < 0 and theotheris A\ > — (B¢* " (k*) — p).

(e) Ans. The expressions for the eigenvectors are
|: _ﬂc*f” (k,*) C*f// (k,*)
-1 )

The eigenvector associated with A_, v_, has dope given by
c—c*
k — k*
and the eigenvector associated with A\, v, has slope given by
c—c*
k — k*
The linearized system is saddle-path stable since one of the two eigenvalues is positive while the other

} Vi = AV,

=p—A_>0

=p— A < B f (k) <.

is negative.

2. (a) Ans. The steady state is given by the solution to the two conditions
1=0(14+Af (k) -9)
and
= Af (k™) — 6k™.
Differentiating with respect to A,
SR
Af” (k‘*)

dk* = dA
and
de* = (Af' (k) —6) dk* + f (k*)dA
= pdk* + f (k*)dA
e
= (10— ) aa
where the last step substituted the first derivative into the second. Both £* and ¢* increase with A.

(b) Ans: The linearized dynamic equations are

cii1—cp = CAf (k) (ky — k) — B A" (K*) (¢p — ¢¥)

and
kt+1 — kt = ,O(kt - k*) - (Ct — C*) .
In matrix form,
cey1—c || —BAf"(K*) cFAfT (k) c —c*
Fiy1 — Ky | -1 P ke —k* |-

The eigenval ues solve the characteristic polynomial,

)\2+(BC*A_]C”(]{?*)—,()))\-FﬁC*Af”(k*):0



and the eigenvectors solve
SOCAPE) AT Y
The eigenvector associated with A_, v_, has dope given by
c—c* A= —c*Af" (k%) >0

k— k* AL — BerAfT (k)

You can demonstrate that % < 0 (to do so, you use the result that 1 + A_ > 0 for strictly concave f (k)
and p > 0) so that the stable eigenvector slopeincreaseswith A .

(c) Ans. Your phase diagram will illustrate the upward shift inthe Ak.+; = 0 locus and the outward shift
inthe Aci+1 = 0 locus.

(d) Ans: The solution for ¢y will lie on the stable saddle path about the new steady state. At time 0, the
steady state movesto (c¢*, k*) from (¢, ko) and consumption movesimmediately from ¢ to c.

The change in the steady stateis

. = x _ o, Sk
k* — ko __f(E)

AFTE)

so that we can write

S L
_ (AR Y g
= (r- sl 00) o - ).

Thisisequivalent to

- *x _Af”(k*) * K
i G i

The dope of the new saddle pathisgivenby p — A_, so that
co—c" =(p—A_)(ko—Ek").
The changein consumptionatt = 0 is

_ Af”(k‘*)
A G )

where we know that ko < k* for AA > 0. Theterm (—)\, +

f <k*>> (ko — k).

Af" (k)
f(k*)

f (k:*)> cannot be signed without a

specific form for the function f (k).

3. (8 Ans: Inthis part, you solve backwards for k; from ky. The solution is
t—1
k=14 A) k- (1+A) e
s=0

(b) Ans: This part solves the difference equation forwards. You solvefor (1 + A)_T ki forany T > 0

by multiplying the equation of motion,

k‘t+1 = (1 +A) k’t — C¢



by (1+ A)~" for each t and summing. The solution is

L\ t+T—1 Lo\t
kk=(——] k — s
t <1+A> HT ; <1+A> 5

(c) Ans. Letting T — oo, we get

00 1 s—t+1 1 T
= () erdm () Rer

s=t

Thisis a constraint on the planner's consumption plan and permanent holding of capital. The intertemporal

budget constraint can be written as

oo 1 s—t+1
ky > Z (H—A) Cs

s=t

by imposing the solvency condition,

1 T
din () her 20

Beginning at time ¢ = 0, the budget constraint is

) 1 t+1
w=Y () @

t=0

(d) Ans: For this part, we just maximize the utility function Uy = > .2, B (c¢) with respect to the

sequence {¢; },-, subject to the budget set given by

00 1 t+1
>0, foralt>0 and kozz< ) Cr.

= 1+A

00 1 t+1 ]
kO - (—> Ct|
— 1+ A

t+1
B’ (c;) = <—> A fordlt>0

Writing out the Lagrangian,

L:Zﬁtu(ct)+)\
t=0

we get the first-order conditions,

and

00 1 t+1
ko = ZO (]_—i——A) Ct for A > 0.
t—

Using the first-order conditions, notice that
' (¢p) = Bu (cpi1) (1+A)  foralt >0

and
1

u' (Co) = H—A)\

Using thebudget constraint for A > 0 (thatis, weassumethat v’ (¢) > 0forall ¢ > 0), ko = > ;o <

these conditions solve for (co, cz,....) and A.

1
1+A

)t—|—1

Ct,



4. (a) Ans. Write the Lagrangian,

L= Z [ﬁtu (Ct) + )\t (k‘t + Ak‘t — Ct — k}t+1)]

t=0
and derive the necessary conditions,
oL .
— = =
act 0 = ,3 U (Ct) ty
oL
=0 = )\t—|—1 (1+A) = A,
Okii1
oL

—= kip1 =01+ Ak —
3/\t0:> 11 = (1 +A) ky — ¢,
and
Tlim )\TkT—H =0 and Thm k‘T_|_1 > 0.
These can be simplified to
u' () = Bu (cr41) (1 + A)
ki1 = (1 + A) ki — ¢,
and
lim 8T (er)kpy1 =0 and  lim kpyq > 0.
T—oo T—o0o
Notethat thisassumed aninterior solution. A sufficient conditionisthat lim.—.o v’ (¢) = co andu” (¢) <
0foralc>0.

(b) Let u (¢) = log c. The Euler condition becomes

S _B(1+ 4),
Ct

which can be iterated backward to
et =G (14 A) .
Substituting this into the intertemporal budget constraint, we get

[ee) 1 s+1 . 1 t
o= 3 (1) e im () ¢

s=0

(e ¢) 1 s+1 1 t
_ S S :
- Zs:0<1+A> A1+ 4) C°+tlirgo<1+A> ki

_ 1 co + lim Lt t k
T 1+ A1T-370 e \144) "
Now, substitute v’ (¢;) = £ = 157 (1 4+ A) " into the transversality condition,

Ct Co

1 1 1 t
. t 1 . + t t .
thm ﬁ u (Ct) kt+1 = thm ,8 —CO/B (1 + A) k’t_|_1 = _CO thHl (—1 ) kt+1

Thus,

S B
0T 1+41-3

Co



so that
co=(1-=p0)(1+A) k.
You can generalize thisimmediately to
ce=01-0)(14+A)ky, fordlt>0.
(c) Ans. You just need to explain that the transversdity condition, lim; . 3'u’ (¢;) kiy1 = 0, led
to lim; (ﬁ)t k: = 0. That tells us that the constraint that limy_, k711 > 0 implies that the

t t
limy o0 (ﬁ) k. > 0. You should notice that lim;_,oo (ﬁ) k. > 0 is not sufficient to imply that

t
limp_.o k741 > 0. Thetransversality condition tells us that lim;_, (ﬁ) k; = 0 so that the intertem-

poral budget constraint,

o) 1 t+1
ko > Z <1—|——A> Ct
t=0

o0 1\t
ko =S (—— .
0 0(1+A> “

t=

holds with equality as



