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Problem Set 1: Sample answers

1. (a) Ans: Write the Lagrangian as

L =
T[
t=0

�
βtu (ct) + λt ((1− δ) kt + f (kt)− ct − kt+1)

�
and impose the restrictions that kt+1 ≥ 0 and ct ≥ 0 for T ≥ t ≥ 0. The necessary conditions are

∂L

∂ct
= βtu� (ct)− λt ≤ 0, ct ≥ 0 and ct

∂L

∂ct
= 0,

for T ≥ t ≥ 0,
∂L

∂λt
= (1− δ) kt + f (kt)− ct − kt+1 = 0

for T ≥ t ≥ 0,
∂L

∂kt+1
= λt+1

�
1 + f � (kt+1)− δ

�− λt ≤ 0, kt+1 ≥ 0 and kt+1
∂L

∂kt+1
= 0,

for T − 1 ≥ t ≥ 0, and

∂L

∂kT+1
= −λT ≤ 0, kT+1 ≥ 0 and kT+1

∂L

∂kT+1
= 0.

Making the assumption that limc→0 u� (c) =∞ and that k0 > 0, these become

∂L

∂ct
= 0 ⇒ βtu� (ct) = λt > 0,

for T ≥ t ≥ 0,
∂L

∂kt+1
= 0 ⇒ λt+1

�
1 + f � (kt+1)− δ

�− λt = 0,

for T − 1 ≥ t ≥ 0,
kt+1 = (1− δ) kt + f (kt)− ct,

for T ≥ t ≥ 0, and

λTkT+1 = 0 and kT+1 ≥ 0.
These can be simplified to

u� (ct) =
�
1 + f � (kt+1)− δ

�
βu� (ct+1)

for T − 1 ≥ t ≥ 0,
kt+1 = (1− δ) kt + f (kt)− ct,

for T ≥ t ≥ 0, and

βTu� (cT ) kT+1 = 0 and kT+1 ≥ 0.
(b) Ans: The necessary conditions become

u� (ct) =
�
1 + f � (kt+1)− δ

�
βu� (ct+1)
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for all t ≥ 0,
kt+1 = (1− δ) kt + f (kt)− ct,

for all t ≥ 0, and

lim
t→∞βTu� (cT ) kT+1 = 0 and lim

T→∞
kT+1 ≥ 0.

The only change is in the range for t, hence the limits with respect to T .

(c) Ans: The steady state satisfies

ct+1 = ct and kt+1 = kt.

Thus, the steady-state values of c and k are determined by

1 = β
�
1 + f � (k∗)− δ

�
and

c∗ = f (k∗)− δk∗.

(d) Ans: The dynamics are given by

ct+1

ct
= β

�
1 + f � (kt+1)− δ

�
and

kt+1 = (1− δ) kt + f (kt)− ct,
for all t ≥ 0.

Linearizing these leads to

ct+1 − ct = βc∗f �� (k∗) (kt − k∗) + βc∗f �� (k∗) (kt+1 − kt)
and

kt+1 − kt =
�
f � (k∗)− δ

�
(kt − k∗)− (ct − c∗) .

Substituting the linearized resource identity (the second equation) into the linearized Euler condition (the

first equation), we get the system of two difference equations,

ct+1 − ct = βc∗f �� (k∗)β−1 (kt − k∗)− βc∗f �� (k∗) (ct − c∗)
and

kt+1 − kt = ρ (kt − k∗)− (ct − c∗) ,
where ρ = β−1 − 1. Writing this in matrix form, the linearized system is�

ct+1 − ct
kt+1 − kt

�
=

� −βc∗f �� (k∗) c∗f �� (k∗)
−1 ρ

� �
ct − c∗
kt − k∗

�
.

The eigenvalues satisfy the characteristic polynomial,

λ2 +
�
βc∗f �� (k∗)− ρ

�
λ+ βc∗f �� (k∗) = 0.
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The roots are given by

λ± =
1

2

�
− �βc∗f �� (k∗)− ρ

�±t(βc∗f �� (k∗)− ρ)2 − 4βc∗f �� (k∗)
�
,

one of which is λ− < 0 and the other is λ+ > − (βc∗f �� (k∗)− ρ).

(e) Ans: The expressions for the eigenvectors are� −βc∗f �� (k∗) c∗f �� (k∗)
−1 ρ

�
ν± = λ±ν±.

The eigenvector associated with λ−, ν−, has slope given by

c− c∗
k − k∗ = ρ− λ− > 0

and the eigenvector associated with λ+, ν+, has slope given by

c− c∗
k − k∗ = ρ− λ+ < βc∗f �� (k∗) < 0.

The linearized system is saddle-path stable since one of the two eigenvalues is positive while the other

is negative.

2. (a) Ans: The steady state is given by the solution to the two conditions

1 = β
�
1 +Af � (k∗)− δ

�
and

c∗ = Af (k∗)− δk∗.

Differentiating with respect to A,

dk∗ = − f � (k∗)
Af �� (k∗)

dA

and

dc∗ =
�
Af � (k∗)− δ

�
dk∗ + f (k∗) dA

= ρdk∗ + f (k∗) dA

=

�
f (k∗)− ρ

f � (k∗)
Af �� (k∗)

�
dA,

where the last step substituted the first derivative into the second. Both k∗ and c∗ increase with A.

(b) Ans: The linearized dynamic equations are

ct+1 − ct = c∗Af �� (k∗) (kt − k∗)− βc∗Af �� (k∗) (ct − c∗)
and

kt+1 − kt = ρ (kt − k∗)− (ct − c∗) .
In matrix form, �

ct+1 − ct
kt+1 − kt

�
=

� −βc∗Af �� (k∗) c∗Af �� (k∗)
−1 ρ

� �
ct − c∗
kt − k∗

�
.

The eigenvalues solve the characteristic polynomial,

λ2 +
�
βc∗Af �� (k∗)− ρ

�
λ+ βc∗Af �� (k∗) = 0
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and the eigenvectors solve � −βc∗Af �� (k∗) c∗Af �� (k∗)
−1 ρ

�
ν± = λ±ν±.

The eigenvector associated with λ−, ν−, has slope given by

c− c∗
k − k∗ = ρ− λ− =

−c∗Af �� (k∗)
λ− − βc∗Af �� (k∗)

> 0.

You can demonstrate that dλ−
dA

< 0 (to do so, you use the result that 1 + λ− > 0 for strictly concave f (k)

and ρ > 0) so that the stable eigenvector slope increases with A .

(c) Ans: Your phase diagram will illustrate the upward shift in the∆kt+1 = 0 locus and the outward shift

in the∆ct+1 = 0 locus.

(d) Ans: The solution for c0 will lie on the stable saddle path about the new steady state. At time 0, the

steady state moves to (c∗, k∗) from (c0, k0) and consumption moves immediately from c0 to c0.

The change in the steady state is�
c∗ − c0
k∗ − k0

�
=

⎡⎣ �f (k∗)− ρ
f 3(k∗)
Af 33(k∗)

�
− f 3(k∗)
Af 33(k∗)

⎤⎦∆A
so that we can write

c∗ − c0 = −
�
f (k∗)− ρ

f � (k∗)
Af �� (k∗)

�
Af �� (k∗)
f � (k∗)

(k∗ − k0)

=

�
ρ− Af

�� (k∗)
f � (k∗)

f (k∗)
�
(k∗ − k0) .

This is equivalent to

c0 − c∗ =
�
ρ− Af

�� (k∗)
f � (k∗)

f (k∗)
�
(k0 − k∗)

The slope of the new saddle path is given by ρ− λ−, so that

c0 − c∗ = (ρ− λ−) (k0 − k∗) .
The change in consumption at t = 0 is

c0 − c0 =
�
−λ− + Af

�� (k∗)
f � (k∗)

f (k∗)
�
(k0 − k∗) ,

where we know that k0 < k∗ for ∆A > 0. The term
�
−λ− + Af 33(k∗)

f 3(k∗) f (k
∗)
�

cannot be signed without a

specific form for the function f (k).

3. (a) Ans: In this part, you solve backwards for kt from k0. The solution is

kt = (1 +A)
t k0 −

t−1[
s=0

(1 +A)t−s−1 cs

(b) Ans: This part solves the difference equation forwards. You solve for (1 +A)−T kt+T for any T > 0

by multiplying the equation of motion,

kt+1 = (1 +A) kt − ct
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by (1 +A)−t for each t and summing. The solution is

kt =

�
1

1 +A

�T
kt+T +

t+T−1[
s=t

�
1

1 +A

�s−t+1
cs.

(c) Ans: Letting T →∞, we get

kt =
∞[
s=t

�
1

1 +A

�s−t+1
cs + lim

T→∞

�
1

1 +A

�T
kt+T .

This is a constraint on the planner’s consumption plan and permanent holding of capital. The intertemporal

budget constraint can be written as

kt ≥
∞[
s=t

�
1

1 +A

�s−t+1
cs

by imposing the solvency condition,

lim
T→∞

�
1

1 +A

�T
kt+T ≥ 0.

Beginning at time t = 0, the budget constraint is

k0 ≥
∞[
t=0

�
1

1 +A

�t+1
ct

(d) Ans: For this part, we just maximize the utility function U0 =
S∞
t=0 β

tu (ct) with respect to the

sequence {ct}∞t=0 subject to the budget set given by

ct ≥ 0, for all t ≥ 0 and k0 ≥
∞[
t=0

�
1

1 +A

�t+1
ct.

Writing out the Lagrangian,

L =
∞[
t=0

βtu (ct) + λ

%
k0 −

∞[
t=0

�
1

1 +A

�t+1
ct

&
,

we get the first-order conditions,

βtu� (ct) =
�

1

1 +A

�t+1
λ for all t ≥ 0

and

k0 =
∞[
t=0

�
1

1 +A

�t+1
ct for λ > 0.

Using the first-order conditions, notice that

u� (ct) = βu� (ct+1) (1 +A) for all t ≥ 0
and

u� (c0) =
1

1 +A
λ.

Using the budget constraint forλ > 0 (that is, we assume thatu� (c) > 0 for all ċ > 0), k0 =
S∞
t=0

�
1

1+A

�t+1
ct,

these conditions solve for (c0, c2,....) and λ.
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4. (a) Ans: Write the Lagrangian,

L =
∞[
t=0

�
βtu (ct) + λt (kt +Akt − ct − kt+1)

�
and derive the necessary conditions,

∂L

∂ct
= 0 ⇒ βtu� (ct) = λt,

∂L

∂kt+1
= 0 ⇒ λt+1 (1 +A) = λt,

∂L

∂λt
= 0 ⇒ kt+1 = (1 +A) kt − ct,

and

lim
T→∞

λTkT+1 = 0 and lim
T→∞

kT+1 ≥ 0.
These can be simplified to

u� (ct) = βu� (ct+1) (1 +A)

kt+1 = (1 +A) kt − ct,
and

lim
T→∞

βTu� (cT ) kT+1 = 0 and lim
T→∞

kT+1 ≥ 0.
Note that this assumed an interior solution. A sufficient condition is that limc→0 u� (c) =∞ and u�� (c) <

0 for all c > 0.

(b) Let u (c) = log c. The Euler condition becomes

ct+1

ct
= β (1 +A) ,

which can be iterated backward to

ct = βt (1 +A)t c0.

Substituting this into the intertemporal budget constraint, we get

k0 =
∞[
s=0

�
1

1 +A

�s+1
cs + lim

t→∞

�
1

1 +A

�t
kt

=
∞[
s=0

�
1

1 +A

�s+1
βs (1 +A)s c0 + lim

t→∞

�
1

1 +A

�t
kt

=
1

1 +A

1

1− β
c0 + lim

t→∞

�
1

1 +A

�t
kt.

Now, substitute u� (ct) = 1
ct
= 1

c0
β−t (1 +A)−t into the transversality condition,

lim
t→∞βtu� (ct) kt+1 = lim

t→∞βt
1

c0
β−t (1 +A)−t kt+1 =

1

c0
lim
t→∞

�
1

1 +A

�t
kt+1

= (1 +A)
1

c0
lim
t→∞

�
1

1 +A

�t+1
kt+1 = 0.

Thus,

k0 =
1

1 +A

1

1− β
c0
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so that

c0 = (1− β) (1 +A) k0.

You can generalize this immediately to

ct = (1− β) (1 +A) kt, for all t ≥ 0.
(c) Ans: You just need to explain that the transversality condition, limt→∞ βtu� (ct) kt+1 = 0, led

to limt→∞
�

1
1+A

�t
kt = 0. That tells us that the constraint that limT→∞ kT+1 ≥ 0 implies that the

limt→∞
�

1
1+A

�t
kt ≥ 0. You should notice that limt→∞

�
1

1+A

�t
kt ≥ 0 is not sufficient to imply that

limT→∞ kT+1 ≥ 0. The transversality condition tells us that limt→∞
�

1
1+A

�t
kt = 0 so that the intertem-

poral budget constraint,

k0 ≥
∞[
t=0

�
1

1 +A

�t+1
ct

holds with equality as

k0 =
∞[
t=0

�
1

1 +A

�t+1
ct.


