Economics 205C Spring 2017 ## Midterm: Answer any two (2) questions 1. Suppose the economy's inflation rate is described by the following equation (all variables expressed as percentage deviations around a zero-inflation steady state): $$\pi_t = \beta E_t \pi_{t+1} + \kappa x_t + e_t, \tag{1}$$ where π_t is inflation, x_t is the gap between output and the flexible price equilibrium output level and e_t is a white noise cost shock. The first order condition for the representative household's consumption choice takes the form $$x_t = E_t x_{t+1} - \left(\frac{1}{\sigma}\right) (i_t - E_t \pi_{t+1} - r_t^n),$$ (2) where r^n is an exogenous white noise process. The central bank sets the nominal interest rate i_t to minimize $$\frac{1}{2} \mathcal{E}_t \left[\sum_{i=0}^{\infty} \beta^i \left(\pi_{t+i}^2 + \lambda x_{t+i}^2 \right) \right]. \tag{3}$$ - (a) If the loss function (3) is interpreted as a second order approximation to the welfare of the representative household, explain what factors determine the optimal weight to put on stabilizing the output gap relative to stabilizing inflation (i.e., how does λ depend on structural characteristics of the model)? - (b) Ignoring the zero lower bound on nominal interest rates, derive the equilibrium conditions satisfied by x_t and π_t under optimal discretionary policy and show that these conditions are satisfied by $\pi_t = Be_t$ and $x_t = -(\kappa/\lambda)Be_t$ for some constant B. Find the value of B. (Hint: recall that e_t is a white noise process.) - (c) In the equilibrium you found in part (b), show that the equilibrium behavior of the nominal interest rate is given by $$i_t = r_t^n + be_t, (4)$$ where b is a function of the model's parameters. - (d) Suppose the central bank considers adopting (4) as its policy rule for setting i_t . What problems might arise if such a policy rule is adopted? How can these problems be avoided? Explain. - 2. Assume the economy can be characterized by the following three equation system: $$x_t = \mathbf{E}_t x_{t+1} - \left(\frac{1}{\sigma}\right) (i_t - \mathbf{E}_t \pi_{t+1} - r_t^n)$$ $$\pi_t = \beta \mathbf{E}_t \pi_{t+1} + \kappa x_t$$ $$i_t = \max \left\{ \begin{array}{c} 0 \\ r_t^n + \phi \pi_t; \ \phi > 1 \end{array} \right.$$ In periods t=1 and 2, $r_1^n=r_2^n=r^{zlb}<0$ and r^{zlb} is sufficiently negative such that $i_1=i_2=0$. At $t=3,...,r_t^n=r>0$ and $i_t=r_t^n+\phi\pi_t$. - (a) Verify that the equilibrium inflation rate and output gap for $t = 3, 4, \dots$ equal zero. - (b) Given that $\pi_t = x_t = 0$ for $t \ge 3$, what are the equilibrium values of x_2 and π_2 ? - (c) Given your answer to part (b), what are the equilibrium values of x_1 and π_1 ? - (d) Explain how (and why) the degree of nominal price rigidity affects the equilibrium at t=1. - 3. The NK two-country model can be approximated around a zero steady-state inflation rate to obtain $$x_t = \mathcal{E}_t x_{t+1} - \left(\frac{1}{\sigma_0}\right) \left(i_t - \mathcal{E}_t \pi_{h,t+1} - \tilde{\rho}_t\right), \tag{5}$$ where $x_t = y_t - y_t^f$ is the output gap, $\sigma_0 = \sigma \left[1 + \gamma \left(1 - \sigma\right)\right]$, and $$\tilde{\rho}_{t} \equiv \sigma_{0} \left(\mathbf{E}_{t} y_{t+1}^{f} - y_{t}^{f} \right) - \gamma \left(1 - \sigma \right) \left(\mathbf{E}_{t} y_{t+1}^{*} - y_{t}^{*} \right).$$ In the definition of $\tilde{\rho}_t$, y_t^* is foreign income. If a_t is a productivity shock, the domestic flex-price output is defined as $$y_t^f = \frac{\gamma (1 - \sigma) y_t^* + (1 + \eta) a_t}{\eta + \sigma + \gamma (1 - \sigma)}.$$ (6) Domestic product price inflation is given by $$\pi_{h,t} = \beta \mathcal{E}_t \pi_{h,t+1} + \bar{\kappa} x_t + e_t, \tag{7}$$ where $\bar{\kappa} = \kappa \left[\eta + \sigma + \gamma \left(1 - \sigma \right) \right]$ and u_t is an inflation shock. Assume social welfare is given by $$\frac{1}{2} \mathcal{E}_t \sum_{i=0}^{\infty} \beta^i \left(\pi_{h,t+i}^2 + \lambda x_{t+i}^2 \right). \tag{8}$$ - (a) Carefully explain why is y_t^f independent of foreign income when $\sigma = 1$? - (b) If the policy maker wishes to minimize (8), what is the first order condition (after eliminating any Lagrangian multipliers) that characterizes optimal policy under discretion? - (c) Suppose $\sigma = 1$ and suppose y_t^* increases. Under the policy you derived in part (c), what is the effect on the home country's inflation rate as measured by the Consumer Price Index? Explain.