
204C 2nd Midterm Preparation

David Sungho Park

June 21, 2017

1. [2008,2016] The revelation principle:

A. In ordinary language, state the revelation principle.

If there exists a direct mechanism g(m) that implements the social choice function f(θ), then there

exists a direct mechanism that is truthfully implementable. Thus any non-truthful direct mechanism

can be replicated by a truthful direct mechanism. That is, if the designer can implement f(θ) when

player i lies, the designer can have i tell the truth and lie for i.

B. Again in ordinary language, explain why it is important (explain both the necessary and sufficient

implications).

- There may be many indirect mechanisms that are implementable, but we only need to look at

direct mechanism that are truthfully implementable.

- On the other side, if we cannot find a direct mechanism that is truthfully implementable, then

there is no way to implement the social choice function. That is, there is not an indirect and/or

non-truthfully implementable mechanism either.

2. [2008] Suppose that there are only two types θ1 and θ2, and that column and row draw these inde-

pendently. θi|θj means that a person who is of type j announces that she is of type i. Payoff is row,

column.

A. Provide a matrix example where truth is a dominant strategy equilibrium.

θ1|θ1 θ2|θ1 θ1|θ2 θ2|θ2
θ1|θ1 2,2 3,1 10,12 3,14

θ2|θ1 1,3 2,2 9,6 1,7

θ1|θ2 4,5 6,4 11,15 4,16

θ2|θ2 5,2 7,1 12,14 5,16

B. Suppose that the probability of a draw for each type is 1/2. Provide a matrix example where truth

is a Bayesian-Nash equilibrium, but not dominant strategy equilibrium.

θ1|θ1 θ2|θ1 θ1|θ2 θ2|θ2
θ1|θ1 0,0 3,1 8,15 10,14

θ2|θ1 1,1 4,2 9,8 5,7

θ1|θ2 4,5 8,6 14,18 4,14

θ2|θ2 3,6 7,1 12,10 16,16
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An example where truth telling is a Nash Equilibrium but not a dominant-strategy equilibrium.

θ1|θ1 θ2|θ1 θ1|θ2 θ2|θ2
θ1|θ1 2,2 3,1 8,12 3,14

θ2|θ1 1,1 4,2 9,8 1,7

θ1|θ2 4,5 8,6 14,18 4,14

θ2|θ2 5,2 7,1 12,14 5,16

3. [2016] Bridge Problem: Suppose the the cost of building a bridge is $90K and if the bridge is built,

Player 1 will have a tax payment (not transfer payment) of $60K, Player 2 will have a tax payment of

$30K and Player 3 will pay nothing. Suppose that the true value to Players 1, 2, and 3 is $40K, $30K,

and $40K, respectively. Under the VCG mechanism,

A. Will the bridge be built?

Yes, since the total benefit of building the bridge to all three players ($110K) is greater than the

cost ($90K).

B. What will be the transfer payments? Show your calculations.

Assuming everyone is telling the truth, the VCG mechanism requires the transfer payment of j to

be

tj(X,N,M) =

N∑
i6=j

vi(x̂(X,N − 1,M−j),mi)−
N∑
i 6=j

vi(x̂(X,N,M),mi).

Then the transfer payments can be calculated as

t1 = [0 + 0]− [(30− 30) + (40− 0)] = −$40K

t2 = [0 + 0]− [(40− 60) + (40− 0)] = −$20K

t3 = [0 + 0]− [(40− 60) + (30− 30)] = +$20K

That is, players 1 and 2 will receive $40K and $20K,respectively, from the government, and player

3 should pay the government $20K.

C. Why is truth a dominant-strategy equilibrium? You can explain in words.

- The buyer’s report of his value does not determine his transfer payments (or tax payments) but

only whether the bridge is built. If the buyer overreports his value, he may end up buying the

item for more than it is worth (i.e. true benefit < (reported) cost to others < reported benefit).

If the buyer underreports his value, he may lose out from gaining a surplus (i.e. reported benefit

< reported cost to others < true benefit). All other situations yield the same surplus to the buyer

whether or not the buyer tells the truth. So telling the truth is a weakly dominant strategy, and

this is true for all players.

- Truth is a dominant-strategy equilibrium because the marginal costs and benefits to society are

identical to the costs and benefits to player j. Player j wants the bridge to be built if and only if

his true benefit is greater than the reported cost to the other players. The bridge will be built if

and only if player j’s reported benefit is greater than the reported cost to the other players.
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4. [2016] VCG Mechanism: Briefly point out two problems with the VCG mechanism.

(1) It need not result in a balanced budget; equivalently, utility may be lost in eliciting the truth.

(2) The rule can be gamed by coalitions (i.e. collusions); players can exaggerate their reported values

to increase the size of their transfer payments.

(3) The players might choose not to participate

5. Check again! [2009] For vi(f(θ), θ) quasi-linear, the social choice function f(θ) is ex-post efficient if:

α.
∑
vi(f(θ), θ) ≥

∑
vi(x, θ) for all x, and β.

∑
ti(θ) = 0. That is, there is balanced budget. Show

that α need not hold if vi(f(θ), θ) is not quasi-linear.

Consider a two-person world with only one good—apples. Suppose we have a non-quasi-linear utlity

function where person 1’s utility is u1 = 1A, and person 2’s utility is u2 = 2A where A is the number

of apples. Let x be to distribute 10 apples to person 1 and 0 apples to person 2. And let f(θ) be to

distribute 0 apples to person 1 and 9 apples to person 2. Even though the sum of utilities is greater

with f(θ) than with x, there is no way to redistribute the apples (let’s call it x′) so that both players

1 and 2 weakly prefer x′ to x (that is, there is no x′ Pareto superior to x).

6. [2008] Complete the following definition.

For vi(f(θ), θ) quasi-linear, the social choice function f(θ) is ex-post efficient if:

α.
∑
vi(f(θ), θ) ≥

∑
vi(x, θ) for all x, and

β.
∑
ti(θ) = 0 (balanced budget)

7. [2008] Second Price auction (assume that the seller does not value the item).

A. Define a second-price auction.

Each player calls out his/her type mi or bids Bi. The player with the highest value/bid receives

the item but is only required to pay the seller the second-highest declared bid/value.

B. Prove that it is truthfully implementable in dominant strategies. Ordinary language is acceptable,

but do not “prove” by example (a 2-player example is not adequate, but an n-player example is).

In this auction, it never hurts to tell the truth, but it may hurt to tell a lie. Let’s consider the cases

where telling a lie would lead to change in outcomes.

- The only case that player j’s strategy of overreporting can change the outcome is when another

player has a value higher than j’s true value but less than j’s reported value. In such case, player

j would win the item but has to pay more than his true value. (j’s true value < another player’s

value < j’s reported value)

- Underreporting would also be an inappropriate strategy. The outcome would be different only

when another player reported more than player j’s message but less than j’s true value. In such

case, player j would lose out on a positive gain. (j’s reported value < another’s value < j’s true

value )
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8. [2009,2016] Suppose that there are several buyers with quasi-linear utility functions. Is there a

dominant strategy mechanism that extracts all the surplus from the buyer with the highest value? Yes

or No. Prove your answer to be the case.

- No. To be less abstract, we consider a first-price sealed-bid auction, which is institution free. By the

revelation principle if we show that we cannot find a direct mechanism that is truthfully implementable,

it is not implementable at all.

- It can be easily seen that truth telling is not a dominant strategy equilibrium in this case. Suppose we

have two buyers and buyer 2’s bid is B̂ such that B̂ < θ1. Then buyer 1 has incentive to untruthfully

choose B1 such that B̂ < B1 < θ1, because he can obtain a surplus.

- We can also easily demonstrate that truth telling is not a Bayesian Nash equilibrium. Suppose buyer

2 has told the truth (but 2’s value is unknown to 1). Then buyer 1 will maximize [θ1−m1]P (m1 > θ2).

Assuming θ2 is uniformly distributed on [0,1], this is equivalent to [θ1−m1]m1. The FOC is m1 = 1
2θ1.

- In words, player 1 needs to balance the tradeoff between the probability of winning the item and

the surplus. The optimal strategy in this case is to announce one-half of her true value. A symmetric

argument holds for player 2.

- In essence, the social choice function cannot be implemented because the seller tries to extract all of

the surplus value from the winning buyer.

9. [2008, 2009] Bilateral Trade.

Suppose that there is a buyer and a seller, and that each side values the item somewhere between 0

and 1. The values (utilities) that the buyer and seller have for the item are θb, θs, respectively. Both

sides have quasi-linear utilities.

A. What is the VCG mechanism in this case? Explain the mechanism both when there is a trade and

when there is no trade.

(The VCG mechanism can accomplish a mechanism where a trade takes place if and only if θb > θs.)

- If mb ≤ ms, there will be no trade and the utility of the seller will be θs and the utility of the

buyer will be 0.

- If mb > ms, there will be a trade and the transfer payments will be tb = ms and ts = −mb. The

utilities will be ub = θb −ms and us = 0− (−mb) = mb.

B. Show that truth-telling is a dominant strategy equilibrium.

- The buyer wants to trade if and only if θb > ms, but a trade takes place if and only if mb > ms.

So the buyer will always want to tell the truth (i.e. truth is a weakly dominant strategy).

- The seller wants to trade if and only if θs < mb, but a trade takes place if and only if ms < mb.

So the seller will always want to tell the truth (i.e. truth is a dominant strategy).

- After all, one’s announcement has no influence on the amount of own’s transfer but only on

whether a transfer will take place.

C. Show that the mechanism is efficient.

All Pareto improving trades will take place under this mechanism. (When it comes to bilateral

trade, only the VCG mechanism is α efficient.)

D. Point out one problem with this mechanism.

The VCG mechanism does not satisfy balanced budget and one or both players may refuse to

participate.
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10. [2009,2016] Gibbard-Satterthwaite: If f(θ) has universal domain and the range has at least three

elements, then the social choice function is truthfully implementable in dominant strategies if and only

if it is dictatorial. Provide an example illustrating both aspects of this proposition (if and only if)

along with an accompanying explanation. Note that quasi-linearity is not being assumed.

Suppose we have two persons (i = 1, 2) and three alternatives of choice (X = {x, y, z}). Person 1 has

only one type (Θ1 = {θ1}) and Person 2 has two types (Θ2 = {θ′2, θ′′2}). The rank ordering of x, y, and

z is as follows

θ1 θ′2 θ′′2

1 x z y

2 y y x

3 z x z

Consider the ex post efficient social function f(·) with f(θ1, θ
′
2) = y and f(θ1, θ

′′
2 ) = x.

If person 2 is type θ′′2 , she has incentive to claim to be θ′2 in order to obtain her most desired outcome

y. So this social choice function is not truthfully implementable.

Suppose instead that only person 2’s preference counted (i.e. the social choice function is dictatorial).

Then person 2 will declare here true type since she will get what she prefers the most. Since person

1 would have no effect, he would be indifferent between telling the truth and lying. Hence, telling the

truth would be a weakly dominant strategy. Similarly, if person 1 were the dictator, then person 1

would choose his most preferred position and there would be no benefit to person 1 or person 2 from

lying.

11. [2009] Let V ∗ = V i(θi, θi) = ui(f(θi, θ−i), θi). Suppose θi ∈ [0, 1].

State the Hotelling’s Lemma.

If V ∗ = V i(θi, θi) = ui(f(θi, θ−i), θi) is absolutely continuous, then

(a) V ∗(θi) = V i(θi, θi) = ui(f(θi, θ−i), θi, θ−i) = ui(f(0, θ−i), 0, θ−i) +
∫ θi
0
ui2(f(s, θ−i), s, θ−i)ds

(b) If V ∗ is differentiable at θi, then V ∗(θi) = V i2 = ui2.

Recall that V (message, true value). If truth telling (i.e. mi = θi) is a Bayesian Nash equilibrium,

then arg maxmi
V i(mi, θi) = θi; so, V i1 (θi, θi) = 0
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12. [2008,2016] The revenue equivalence theorem.

HOTELLING’S LEMMA: Suppose that θi ∈ [0, 1]. If V ∗(θi) = V i(θi, θi) = ui(f(θi, θ−i), θi, θ−i) is

absolutely continuous, then

(a) V ∗(θi) = V i(θi, θi) = ui(f(θi, θ−i), θi, θ−i) = ui(f(0, θ−i), 0, θ−i) +
∫ θi
0
ui2(f(s, θ−i)s, θ−i)ds

(b) If V ∗ is differentiable at θi, then V ∗
′
(θi) = V i2 = ui2

Assume the following utility function: ui(f(mi, θ−i), θi) = P i(mi, θ−i)θi − t̄i(mi, θ−i).

EXPECTED REVENUE EQUIVALENCE THEOREM. Let there be N risk neutral buyers. Each

buyer’s valuation, θi, is drawn independently from an interval [0,1] with strictly positive density, g(θi).

Suppose that a given pair of Bayesian Nash equilibria of two different auction procedures are such that

for every buyer i: (1) for each possible realization of θi buyer i has an identical probability of getting

the good in the two auctions; and (2) buyer i has the same expected utility level in the two auctions

when his valuation for the object is the lowest possible level. Then the equilibria of the two auctions

generate the same expected revenue for the seller.

Prove the Theorem.

Assuming that all others tell the truth, buyer i’s expected payoff is

V i(mi, θi) = U i(f(mi, θ−i), θi) = P i(mi, θ−i)θi − t̄i(mi, θ−i),

which is absolutely continuous at the optimum (i.e. mi = θi) by assumption. Therefore we can apply

the Hotelling’s Lemma.

We will take the total derivative of i’s expected payoff V i(mi, θi) with respect to θi and evaluate it at

mi = θi. By part (b) of the Lemma, we know such a derivative exists.

dV ∗ = V i1 dmi + V i2 dθi = U i1f1dmi + U i2dθi = U i2dθi,

where the last inequality holds since V i1 = U i1f1dmi = 0 at optimum. From this, we obtain

V ∗
′

=
dV ∗

dθi
= U i2 = P i(mi, θ−i).

Now, we can use part (a) to derive V ∗(θi) and impose the result obtained above.

V ∗(θi) = V i(θi, θi) = U i(f(θi, θ−i), θi) = U i(f(0, θ−i), 0) +

∫ θi

0

U i2(f(s, θ−i), s)ds

= U i(f(0, θ−i), 0) +

∫ θi

0

P i(s, θ−i)ds.

The first term is identical for any auction type (the expected utility of the lowest type is the same

regardless of the auction type). Note the second term is totally independent of the payment mechanism

(i.e. t̄i(mi, θ−i)). That is, buyer i’s expected utility is independent of the (implementable) transfer

function.

All auctions that satisfy the conditions of the theorem produce the same expected cost to the buyers

and therefore the same expected revenue to the seller (which is the sum of the bidders’ payments).

Therefore, all auction types yield the same expected revenue.
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13. [2008] All-pay Sealed-bid Auction withe Private Values

In this auction, the following bid function is a truthfully-implementable Bayesian-Nash equilibrium

strategy (assuming independent draws from a uniform distribution on [0,1]):

b(θ) = [(n− 1)/n]θn

From this information derive the seller’s expected revenue.

The seller keeps all of the n bids. So the seller’s expected revenue is

n

∫ 1

0

n− 1

n
θndθ = (n− 1)

θn+1

n+ 1

∣∣∣∣1
0

=
n− 1

n+ 1
,

which is the same expected revenue as the first and second price auctions.

14. [2009] Let θi be independently and uniformly distributed on [0,1]. Consider a sealed-bid, private-value,

all-pay auction. Let i’s utility = θi − bi if i gets the object and −bi if i does not get the object.

(a) Derive the (symmetric) Bayesian-Nash bidding strategy.

Since the player pays his bid whether he wins or not, the expected payoff of the player is

V (m, θ) = θ[G(m)]n−1 − b(m), where G(m) = θ

V1(m, θ) = Vm(m, θ) = (n− 1)θ[G(m)]n−2 − b′(m)
∣∣∣
m=θ

= 0

⇐⇒ (n− 1)θn−1 − b′(θ) = 0

⇐⇒ b(θ) =
n− 1

n
θn.

(b) From (a), derive the seller’s expected revenue.

The seller keeps all of the n bids. So the seller’s expected revenue is

n

∫ 1

0

n− 1

n
θndθ = (n− 1)

θn+1

n+ 1

∣∣∣∣1
0

=
n− 1

n+ 1
,

which is the same expected revenue as the first and second price auctions.

(c) Show that the two necessary and sufficient conditions of the Bayesian incentive compatibility

theorem are satisfied in this case.

(1) V1(θ, θ) + V2(θ, θ) is increasing in θ. (monotonicity requirement)

Since V1(m, θ) = 0 at m = θ, we only need to show that V2(m, θ) is increasing in θ at m = θ.

V2(m, θ) = Vθ(m, θ) = [G(m)]n−1 = θn−1

=⇒ dV2
dθ

= (n− 1)θn−2 ≥ 0.

Thus the monotonicity requirement is satisfied.

(2) V ∗(θ) = V (θ, θ) = V (0, 0) +
∫ θ
0
V2(m, s)ds = 0 +

∫ θ
0

[G(s)]n−1ds =
∫ θ
0
sn−1ds = 1

ns
n
∣∣∣θ
0

= 1
nθ

n.

This result is equivalent to that obtained in the first price auction.
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15. [2008] First-price Sealed-bid Common Values Auction

Assume that uj = [
∑
θi]/n − bj if J wins the auction and that θi is distributed independently and

uniformly on [0,1]. Recall that the expected kth highest value among n values independently drawn

from the uniform distribution on [0,1] is (n+ 1− k)/(n+ 1).

Derive the relevant equations for a truthful Bayesian Nash Equilibrium that one could then solve using

Maple.

We can derive the BNE bidding strategies via our incentive compatibility approach. The expected

value of the item is a weighted average of the bidder’s own observation (θ) and the expected value of

the n− 1 bidders’ observations (m2 ).

V (m, θ) =
( 1

n
· θ +

n− 1

n
· m

2
− b(m)

)
[G(m)]n−1, G(m) = m (∵ uniform distribution).

Vm(m, θ) =
(n− 1

2n
− b′(m)

)
mn−1 +

( 1

n
· θ +

n− 1

n
· m

2
− b(m)

)
(n− 1)mn−2

∣∣∣∣
m=θ

= 0

⇐⇒
(n− 1

2n
− b′(θ)

)
θn−1 +

( 1

n
· θ +

n− 1

n
· θ

2
− b(θ)

)
(n− 1)θn−2 = 0

⇐⇒
(n− 1

2n
− b′(θ)

)
θ +

( 1

n
· θ +

n− 1

n
· θ

2
− b(θ)

)
(n− 1) = 0

When θ = 0,

=⇒ −b(0)(n− 1) = 0,

so b(0) = 0 as long as n− 1 > 0.

16. [2016] Let θi be independently and uniformly distributed on [0,1]. Consider a sealed-bid, first-price

common-values auction, where the common value is the average of the types. Derive the differential

equations needed to solve the bidding function. Do not actually solve these equations expect for b(0).

In order to avoid the winner’s curse, bidder i will not bid her observation (as was the case in the private

values auction) but bid her expected value conditional on everyone else having a weakly lower signal

than her message.

We can derive the BNE bidding strategies via our incentive compatibility approach. The expected

value of the item is a weighted average of the bidder’s own observation (θ) and the expected value of

the n− 1 bidders’ observations (m2 ).

V (m, θ) =
( 1

n
· θ +

n− 1

n
· m

2
− b(m)

)
[G(m)]n−1, G(m) = m (∵ uniform distribution).

Vm(m, θ) =
(n− 1

2n
− b′(m)

)
mn−1 +

( 1

n
· θ +

n− 1

n
· m

2
− b(m)

)
(n− 1)mn−2

∣∣∣∣
m=θ

= 0

⇐⇒
(n− 1

2n
− b′(θ)

)
θn−1 +

( 1

n
· θ +

n− 1

n
· θ

2
− b(θ)

)
(n− 1)θn−2 = 0

⇐⇒
(n− 1

2n
− b′(θ)

)
θ +

( 1

n
· θ +

n− 1

n
· θ

2
− b(θ)

)
(n− 1) = 0

When θ = 0,

=⇒ −b(0)(n− 1) = 0,

so b(0) = 0 as long as n− 1 > 0.
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17. [2009] Let θi be independently and uniformly distributed on [0,1]. Consider a sealed-bid, second-price

common-values auction (where the value of the object =
∑
θi/N). Derive the first order conditions

for truth-telling. Note that for this question, you are not expected to do anything more than derive

the first order conditions.

In order to avoid the winner’s curse, bidder i will not bid her observation (as was the case in the private

values auction) but bid her expected value conditional on everyone else having a weakly lower signal

than her message.

We can derive the BNE bidding strategies via our incentive compatibility approach. The expected

value of the item is a weighted average of the bidder’s own observation (θ) and the expected value of

the n−1 bidders’ observations (m2 ). The expected bid of the second highest bidder is the highest of the

n− 1 other players whose θi are uniformly distributed on [0,m]. (Recall that k-th highest observation

in U [0, 1]: n+1−k
n+1 ).

V (m, θ) =
( 1

n
· θ +

n− 1

n
· m

2
− b(

n− 1

n
m)
)

[G(m)]n−1

=
( 1

n
· θ +

n− 1

n
· m

2
− b(

n− 1

n
m)
)
mn−1 (∵ uniform dist.)

=
( 1

n
· θ +

n− 1

n
· m

2
− n− 1

n
b(m)

)
mn−1,

where the last inequality holds by assuming a proportional relationship between the message and the

bid.

Taking the FOC,

Vm(m, θ) =
(n− 1

2n
− n− 1

n
b′(m)

)
mn−1 +

( 1

n
· θ +

n− 1

n
· m

2
− n− 1

n
b(m)

)
(n− 1)mn−2

∣∣∣∣
m=θ

= 0

⇐⇒
(n− 1

2n
− n− 1

n
b′(θ)

)
θn−1 +

( 1

n
· θ +

n− 1

n
· θ

2
− n− 1

n
b(θ)

)
(n− 1)θn−2 = 0

⇐⇒
(n− 1

2n
− n− 1

n
b′(θ)

)
θ +

( 1

n
· θ +

n− 1

n
· θ

2
− n− 1

n
b(θ)

)
(n− 1) = 0
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18. [2008, 2016] Consider an insurance company that sells accident insurance. The people who buy the

insurance know their own type, 1−θ, which is the probability of having a loss L, where θ is an element

in [0,1]. The insurance company would like to design a contract such that individuals truthfully reveal

their types and that is actuarially fair. Let S(θ) be the share of the loss by the insurance company if

there is an accident and P (θ) be the premium paid by the individual for the insurance (the premium is

paid regardless of the state of the world). The insurance company provides and actuarially-fair policy

for every m. Assume that utility of income has the following properties: v(0) = 0; v′ > 0, and v′′ < 0.

Derive the first order conditions for incentive compatibility. Do not try to solve the differential equa-

tions.

The expected payoff is

V (m, θ) = (1− θ)v(e− P (m)− [1− S(m)]L) + θv(e− P (m))

Plugging in P (m) = (1−m) · S(m) · L (i.e. actuarially fair policy), we get

V (m, θ) = (1− θ)v
(
e− (1−m) · S(m) · L− [1− S(m)]L

)
+ θv

(
e− (1−m) · S(m) · L

)
= (1− θ)v

(
e− (1−m · S(m))L

)
+ θv

(
e− (1−m) · S(m) · L

)
Taking the first order conditions for incentive compatibility at m = θ, we get

Vm(m, θ) = (1− θ)v′
(
e− (1−m · S(m))L

)(
mS′(m)L+ S(m)L

)
+θv′

(
e− (1−m) · S(m) · L

)(
S(m)L− (1−m)S′(m)L

)∣∣∣∣
m=θ

= 0

⇐⇒ (1−θ)v′
(
e−(1−θS(θ))L

)(
θS′(θ)L+S(θ)L

)
+θv′

(
e−(1−θ)S(θ)L

)(
S(θ)L−(1−θ)S′(θ)L

)
= 0.
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