
ECON 204B (Daniel Friedman, Winter 2017): Problem Set 1 - Answer Key

Part I. Problems

Problem 1

(a)

The objective function is the expected payoff:

E[u(a)] = E[u(a, s)|a] = E[1− (a− s)2|a]

= 1− a2 + 2aE[s]− E[s2]

= 1− a2 + 2aE[s]− V ar[s]− E[s]2.

By the first order condition (take the derivative of the last expression with respect to a, set it =0 and

solve for a), the optimal action is

a∗ = E[s] =
1

2
.

The maximum expected payoff is

E[u(a∗)] = 1− a∗2 + 2a∗E[s]− E[s2]

= 1− E[s]
2

+ 2E[s]E[s]− E[s2]

= 1− V ar[s]

= 1− 1

12

=
11

12
.

(b)

Suppose s has an arbitrary CDF F (s). As in part (a), the optimal action is a∗ = E[s]. However,

note that a is bounded by the interval [-10,20]. Therefore,

a∗ =


20 if E[s] > 20

E[s] =
∫
sdF (s) otherwise

−10 if E[s] < -10.

The maximum expected payoff at an interior optimum is

E[u(a∗)] = 1− V ar[s]

.

Remark: the function 1 − (a − s)2 is called the quadratic scoring rule, and is sometimes used to elicit
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beliefs. If you want a forecast of, say, next year’s GDP, you could tell the forecaster that her payment will

be proportional to this function (where a = her forecast and s = the official GDP when it is reported), and

it would be in her interest to think carefully and report her subjective expectation.

Problem 2

(a)

Suppose I have a CARA utility function

u(x) = −e−ax, a > 0

and my certainty equivalent (CE) is $900. Then, a should satisfy

u(CE) = E[u(x)]

u(900) =
1

2
u(1200) +

1

2
u(800)

−e−900a = −1

2
e−1200a − 1

2
e−800a.

This transcendental equation has no closed form solution, but it can be solved numerically, e.g., using

a spreadsheet. The approximate solution (to e−900a

1
2 e
−1200a+ 1

2 e
−800a = 1) is 0.006093... ≈ 0.0061.

(b)

The mean of lottery L is

µL =
1

2
800 +

1

2
1200 = 1000,

and the variance is

σ2
L =

1

2
(800− µL)2 +

1

2
(1200− µL)2 = 2002.

The mean and variance of lottery M = [$900 with prob. 1] are

µM = 900

σ2
M = 0.

Thus, c should satisfy

1000− c ∗ 2002 = 900− c ∗ 0

=⇒ c =
1

400
= 0.0025.

(c)

The mean and variance of lottery N = [$1000 w/ prob. 0.001 and $0 w/ prob. 0.999] are

µN = 0.001 ∗ 1000 = 1
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σ2
N = 0.001 ∗ (1000− 1)2 + 0.999 ∗ (0− 1)2 ≈ 999.

From part (b), the approximate mean-variance utility of N is

µN − cσ2
N ≈ 1− 0.0025 ∗ 999 = −1.4975 < 0.

From part (a), suppose a = .0061. The expected utility of lottery N is

EuN = 0.001 ∗ (−e−.0061∗1000) + 0.999 ∗ (−e−.0061∗0) ≈ −.999.

(d)

Lottery O = [$0 w/ prob. 1] is first order stochastically dominated by lottery N. That is, whatever

happens in lottery N, the result is either positive or $0, which is at least as good as $0. So common

sense and FOSD say that you should prefer N to O. The CARA utility for O is -1 and for N it is a

slightly larger number, so it also says that you should prefer N to O

However, the approximate mean-variance utility of lottery O is 0, which is higher than that of

lottery N. It says you should prefer the certainty of $0 to the slight “risk” of a different outcome,

even if that outcome is better!

This underlines the point in the class Notes that mean-variance is a good approximation when

outcomes are tightly bunched around the mean or when the outcome is normally distributed (or when

CARA is constant), but it can be a bad approximation in other cases.

Problem 3

(a)

The joint probability is computed as

P (d, t1, t2) = P (t1, t2|d) ∗ P (d)

= P (t1|d) ∗ P (t2|d) ∗ P (d) (by conditional independence of t1 and t2 ).

Table 1: Prior Probabilities and Likelihoods
Disease (d) P(d) P(t1=pos | d) P(t1=neg | d) P(t2=pos | d) P(t2=neg | d)

A 0.6 0.7 0.3 0.2 0.8

B 0.4 0.4 0.6 0.5 0.5

Table 2: Joint Probabilities
Disease (d) P(d, pos, pos) P(d, pos, neg) P(d, neg, pos) P(d, neg, neg)

A .6 * .7 * .2 = .084 .6 * .7 * .8 = .336 .6 * .3 * .2 = .036 .6 * .3 *.8 = .144

B .4 * .4 * .5 = .08 .4 * .4 * .5 = .08 .4 * .6 *.5 = .12 .4 *.6 * .5 = .12
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(b)

The prior probability can be computed as

P (t) = P (t, A) + P (t, B), t = t1, t2

and the joint probability as

P (t, d) = P (t|d) ∗ P (d), t = t1, t2.

Table 3: Joint Probabilities
Disease (d) P(t1=pos, d) P(t1=neg, d) P(t2=pos, d) P(t2=neg, d)

A .7 * .6 = .42 .3 * .6 = .18 .2 * .6 = .12 .8 * .6 = .48

B .4 * .4 = .16 .6 * .4 = .24 .5 * .4 = .2 .5 * .4 = .2

Table 4: Prior Probabilities
P(t1=pos) P(t1=neg) P(t2=pos) P(t2=neg)

.58 .42 .32 .68

(c)

For t = t1, t2, the posterior probability when only one test if performed can be computed as

P (d|t) =
P (t, d)

P (t)

=
P (t, d)

P (t|A) ∗ P (A) + P (t|B) ∗ P (B)
.

Table 5: Posterior Probabilities (one test)

d P(d | t1=pos) P(d | t1=neg) P(d | t2=pos) P(d | t2=neg)

A .42 / (.42 + .16) ≈ .724 .18 / (.18 + .24) ≈ .429 .12 / (.12 + .2) = .375 .48 / (.48 + .2) ≈ .706

B .16 / (.42 + .16) ≈ .276 .24 / (.18 + .24) ≈ .571 .2 / (.12 + .2) = .625 .2 / (.48 + .2) ≈ .294

(d)

The posterior probability when two tests are performed can be computed as

P (d|t1, t2) =
P (d, t1, t2)

P (t1, t2)

=
P (d, t1, t2)

P (t1, t2|A) ∗ P (A) + P (t1, t2|B) ∗ P (B)

=
P (d, t1, t2)

P (t1|A) ∗ P (t2|A) ∗ P (A) + P (t1|B) ∗ P (t2|B) ∗ P (B)
.
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Table 6: Posterior Probabilities (two tests)

Disease (d) P(d | pos, pos) P(d | pos neg) P(d | neg, pos) P(d | neg, neg)

A .512 .808 .231 .545

B .488 .192 .769 .455

Problem 4

(a)

The expected payoff with imperfect information is

Eu = .1 ∗ 20 + .5 ∗ 5 + .4 ∗ (−10) = .5.

because each type of salesman is hired. The expected payoff with perfect information is

Eu = .1 ∗ 20 + .5 ∗ 5 + 0 ∗ (−10) = 4.5,

because under perfect information the bad type will not be hired. Therefore, the value of perfect

information is

V PI = 4.5− 0.5 = 4.

(b)

The likelihood (that a salesman would sell n cars in 4 days) is

P (n|type) = e−4λ
(4λ)n

n!
.

The posterior probability (of the type of an n-car-selling salesman) is

P (type|n) =
P (n|type) ∗ P (type)∑
type P (n|type) ∗ P (type)
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Table 7: Likelihoods and Posterior Probabilities

Type P(n | type) P(type | n)

Great
2n

n!e2
0.1∗ 2n

n!e2

0.1∗ 2n

n!e2
+0.5∗ 1

n!e+0.4∗ (1/2)
n

n!e1/2

Good
1
n!e

0.5∗ 1
n!e

0.1∗ 2n

n!e2
+0.5∗ 1

n!e+0.4∗ (1/2)
n

n!e1/2

Poor
(1/2)n

n!e1/2

0.4∗ (1/2)
n

n!e1/2

0.1∗ 2n

n!e2
+0.5∗ 1

n!e+0.4∗ (1/2)
n

n!e1/2

The gross expected payoff of the dealer when he observes n cars sold in the last week is 0 if he

doesn’t hire, and is the conditional expected value if he hires:

Eu(n) = max
{

0, P (great|n) ∗ 20 + P (good|n) ∗ 5 + P (poor|n) ∗ (−10)
}
.

Table 8 shows the dealer’s hiring decision given n.

Table 8: Decision Table
n 0 1 2 3 4 ≤

P (n|great) 0.1353 0.2707 0.2707 0.1804 0.1429

P (n|good) 0.3679 0.3679 0.1839 0.0613 0.0190

P (n|poor) 0.6065 0.3033 0.0758 0.0126 0.0018

P (great|n) 0.0308 0.0815 0.1812 0.3357 0.5836

P (good|n) 0.4180 0.5535 0.6157 0.5703 0.3878

P (poor|n) 0.5513 0.3650 0.2030 0.0940 0.0286

P (n) 0.4401 0.3323 0.1494 0.0538 0.0245

Eu(n|hire) -2.808 0.746 4.673 8.625 13.325

Hiring Decision no yes yes yes yes

The decision only changes when n = 0. Therefore the net value of information is

VI = 2.808︸ ︷︷ ︸
−Eu(0)

∗ 0.4401︸ ︷︷ ︸
P (0)

− 0.04︸︷︷︸
hiring cost

= 1.196.

(c)

The posterior probability (of the type of the salesman who sold 2 cars in the first week and n2 cars

in the second) is

P (type|n1 = 2, n2) =
P (type, 2, n2)

P (2, n2)

=
P (2|type) · P (n2|type) · P (type)∑
type P (2|type) · P (n2|type) · P (type)

,
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since the joint probability can be computed as

P (type, n1, n2) = P (n1, n2|type) · P (type)

= P (n1|type) · P (n2|type) · P (type).

Table 9 displays the decision of the dealer given n2.

Table 9: Decision Table (given n1 = 2)

n2 0 1 2 3 4 ≤
P (n1 | great) 0.2707 0.2707 0.2707 0.2707 0.2707

P (n1 | good) 0.1839 0.1839 0.1839 0.1839 0.1839

P (n1 | poor) 0.0758 0.0758 0.0758 0.0758 0.0758

P (n2 | great) 0.1353 0.2707 0.2707 0.1804 0.1429

P (n2 | good) 0.3679 0.3679 0.1839 0.0613 0.0190

P (n2 | poor) 0.6065 0.3033 0.0758 0.0126 0.0018

P (great | n1, n2) 0.0655 0.1455 0.2760 0.4478 0.6825

P (good | n1, n2) 0.6054 0.6719 0.6374 0.5170 0.3082

P (poor | n1, n2) 0.3291 0.1826 0.0866 0.0351 0.0094

P (n1, n2) 0.0559 0.0504 0.0265 0.0109 0.0057

Eu(n1, n2) 1.0465 4.4428 7.8409 11.1904 15.0961

Hiring Decision yes yes yes yes yes

In this case, there is no change in decision from the message (i.e. the second week performance of the

salesman). Therefore, as the value of information is 0 (which makes the net value -0.04), at the end

of the first week the dealer will not extend the try-out period to the second week but will make the

decision of hiring the salesman permanently.

Note: Alternatively, we can solve this problem in the exactly same process as in part (b) by only

replacing the prior probabilities and get the same results as above.

Problem 5

The posterior probability can be computed as

P (new|prod) =
P (prod|new) ∗ P (new)

P (prod|new) ∗ P (new) + P (prod|old) ∗ P (old)
,

where new and old represents the states that my rival company has new technology or not, respectively, and

prod indicates the level of reported productivity. With the given information, it can be calculated as

P (new|prod) =

1√
2π
exp
(
− (prod−12)2

2

)
∗ 0.1

1√
2π
exp
(
− (prod−12)2

2

)
∗ 0.1 + 1√

2π
exp
(
− (prod−10)2

2

)
∗ 0.9
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As we need this to be greater than 0.5,

1√
2π
exp
(
− (prod−12)2

2

)
∗ 0.1

1√
2π
exp
(
− (prod−12)2

2

)
∗ 0.1 + 1√

2π
exp
(
− (prod−10)2

2

)
∗ 0.9

≥ 0.5

1√
2π
exp
(
− (prod− 12)2

2

)
∗ 0.1− 1√

2π
exp
(
− (prod− 10)2

2

)
∗ 0.9 ≥ 0

exp

(
− (prod− 12)2

2

)/
exp

(
− (prod− 10)2

2

)
− 9 ≥ 0

exp

(
− (prod− 12)2

2
+

(prod− 10)2

2

)
− 9 ≥ 0

exp

(
− 44− 4prod

2

)
≥ 9

2prod− 22 ≥ ln 9

∴ prod ≥ 11 +
1

2
ln 9 ≈ 12.1

Problem 6

(a)

There are two states:

ADEQUATE(A) and SUBSTANDARD(S)

and two actions:

adequate(a) and substandard(s).

The mean test outcome X̄ of the test outcomes {X1, X2, ..., Xn} is distributed as

X̄ ∼

{
N(1, 9/n) if adequate (A)

N(−1, 9/n) if substandard (S).

Using BI, we first consider the final choice, between adequate (a) and substandard (s) given the

observed mean test outcome X̄ for test size n. The expected payoff of a/s choice is

E[u(a|X,n)] = −nP (A|X̄)− (n+ 1000)P (S|X̄)

E[u(s|X,n)] = −nP (S|X̄)− (n+ 1000)P (A|X̄)

Choosing adequate (a) is optimal, if

E[u(a|X,n)] = −nP (A|X̄)− (n+ 1000)P (S|X̄) ≥ −nP (S|X̄)− (n+ 1000)P (A|X̄) = E[u(s|X,n)]

−n(P (A|X̄) + P (S|X̄))− 1000P (S|X̄) ≥ −n(P (S|X̄) + P (A|X̄))− 1000P (A|X̄)

P (S|X̄) ≥ P (A|X̄),
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which is, by Bayes’ theorem, equivalent to

P (X̄|S)P (S)

P (X̄|A)P (A) + P (X̄|S)P (S)
≥ P (X̄|A)P (A)

P (X̄|A)P (A) + P (X̄|S)P (S)

⇔ P (X̄|S) ≥ P (X̄|A) (given the prior probabilities).

By using the pdf of Normal distribution, we get

exp

(
− 1

2

(X̄ − 1

3/
√
n

)2)
≥ exp

(
− 1

2

(X̄ + 1

3/
√
n

)2)
(X̄ − 1)2 ≤ (X̄ + 1)2

X̄ ≥ 0.

Therefore, the decision rule is ”choose a if X̄ ≥ 0 and choose s otherwise.”

(You might use symmetry to obtain this natural decision rule more quickly, but the long method

used above shows how to generalize to non-symmetric priors and/or non-symmetric loss (or utility)

functions.)

Continuing BI, we now consider the strategy of the choice of how many units to test. The expected

payoff is

E[u|n] = P (X̄ ≥ 0)
(
− nP (A|X̄ ≥ 0)− (n+ 1000)P (S|X̄ ≥ 0)

)
+P (X̄ < 0)

(
− nP (S|X̄ < 0)− (n+ 1000)P (A|X̄ < 0)

)
By Bayes’ theorem,

P (A|X̄ ≥ 0) =
P (X̄ ≥ 0|A)P (A)

P (X̄ ≥ 0|A)P (A) + P (X̄ ≥ 0|S)P (S)

P (A|X̄ < 0) =
P (X̄ < 0|A)P (A)

P (X̄ < 0|A)P (A) + P (X̄ < 0|S)P (S)

For the ease of derivation,express the probability using cdf of standardized normal distribution.

P (X̄ ≥ 0|A) = P
(
z ≡ X̄ − 1

3/
√
n
≥ −1

3/
√
n

)
= 1− Φ

( −1

3/
√
n

)

Similarly,
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P (X̄ < 0|A) = Φ
( −1

3/
√
n

)
P (X̄ ≥ 0|S) = 1− Φ

( 1

3/
√
n

)
P (X̄ < 0|S) = Φ

( 1

3/
√
n

)

Since standard normal distribution is symmetric around 0,

P (X̄ ≥ 0|A) = P (X̄ < 0|S)

P (X̄ < 0|A) = P (X̄ ≥ 0|S)

Therefore, the maximal expected utility given N simplifies to

E[u|n] = −n− 1000Φ
( −1

3/
√
n

)
= −n− 1000

∫ −1
3/
√

n

∞

1√
2π
e−

1
2 z

2

The agent choose n to maximize the expected utility. Using Leibnitz’s rule, F.O.C is

dE[u|n]

dn
= 0 ⇐⇒ −1− 1000

1√
2π
e
− 1

2

(
−1

3/
√

n

)2(
− 1

6
n−

1
2

)
= 0

⇐⇒ 500

3
√

2π
· e− n

18 · n− 1
2 = 1

⇐⇒ ln

(
500

3
√

2π

)
− n

18
− 1

2
lnn = 0

⇐⇒ n

9
+ lnn = 2 ln

(
500

3
√

2π

)
.

Solving numerically through a spreadsheet, we get the nearest integer to the solution as

n∗ = 42.

(b)

The objective function is the same as before, to minimize expected loss. The only difference here is

the prior probabilities. For extra credit, you can solve the problem as follows.

Given X̄, P(A)=0.8, P(S)=0.2, and costs 1000 and 400, the agent choose a or s. As derived in

part (a), the optimal decision is adequate(a) if

P (X̄|S)P (S)

400
≤ P (X̄|A)P (A)

1000
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⇔ P (X̄|A)

P (X̄|S)
≥ 5

8

X̄ ≥ −1

2
(ln 8− ln 5)

9

n
≡ c(n)

c(n) replace 0 in (a) and represents the indifferent point between choosing A and choosing S. The

expected utility under this optimal strategy given n is

E[u|n] = P (X̄ ≥ c(n))
(
− nP (A|X̄ ≥ c(n))− (n+ 1000)P (S|X̄ ≥ 0)

)
+P (X̄ < c(n))

(
− nP (S|X̄ < c(n))− (n+ 400)P (A|X̄ < c(n))

)
By Bayes’ theorem,

P (A|X̄ ≥ c(n)) =
P (X̄ ≥ c(n)|A)P (A)

P (X̄ ≥ c(n)|A)P (A) + P (X̄ ≥ c(n)|S)P (S)

P (A|X̄ < c(n)) =
P (X̄ < c(n)|A)P (A)

P (X̄ < c(n)|A)P (A) + P (X̄ < c(n)|S)P (S)

Thus, the expression of the expected utility simplifies to

E[u|n] = −nP (X̄ ≥ c(n)|A)P (A) + (−1000− n)P (X̄ ≥ c(n)|S)P (S)

−nP (X̄ < c(n)|S)P (S) + (−400− n)P (X̄ < c(n)|A)P (A)

For the ease of derivation,express the probability using cdf of standardized normal distribution.

P (X̄ ≥ c(n)|A) = P
(
z ≡ X̄ − 1

3/
√
n
≥ c(n)− 1

3/
√
n

)
= 1− Φ

(c(n)− 1

3/
√
n

)
Similarly,

P (X̄ < c(n)|A) = Φ
(c(n)− 1

3/
√
n

)
P (X̄ ≥ c(n)|S) = 1− Φ

(c(n) + 1

3/
√
n

)
P (X̄ < c(n)|S) = Φ

(c(n) + 1

3/
√
n

)
Also, using the fact that

P (X̄ ≥ c(n), A) + P (X̄ < c(n), A) + P (X̄ ≥ c(n), S) + P (X̄ < c(n), S) = 1

The final expression of expected utility under the optimal strategy given n is

E[u|n] = −n− 1000
(
1− Φ

(c(n) + 1

3/
√
n

))1

5
− 400Φ

(c(n)− 1

3/
√
n

)4

5

remind that c(n) = − 1
2 (ln 8− ln 5) 9

n , Similar to (a), the optimal n is the value which maximizes this

expected utility.

n∗ = 32
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(c)

The sequential sampling problem takes more advanced techniques than those taught in 204b. It turns

out that the optimal decision can be expressed in terms of two thresholds, say U > 0 and L < 0, for

the posterior probability given the test results so far. U is defined by a Bellman equation expressing

indifference between declaring a and continuing to sample, and L is defined by a similar indifference

equation for declaring s or continuing to sample. You continue to sample until the posterior probability

crosses one of the thresholds. Those thresholds are functions of the loss function parameters, the prior

probabilities, and the cost of another test. You may encounter similar problems in “search theory”

of unemployment, or in some theories of reaction time in decision making.

Problem 7

The optimal rule is “Sort methods in descending order of pici . And stop whenever either (a) success is achieved

or (b) all remaining methods have pi
ci
< 1.”

Part (b) holds because (as you can see from the decision tree) trying any remaining methods i changes

payoff by pi − ci < 0 and hence reduces expected payoff. If (a) holds, of course, trying another method

increase its cost with no gain. Hence the stopping rule is optimal.

To see that the descending order is optimal, suppose to the contrary that at some stage the plan calls

for a lower benefit-cost ratio method k to be tried just before a higher benefit-cost ratio method kt+1. We

will show that switching the order increases expected payoff. This will establish the rule, since such k exists

if and only if the rule is violated.

So, to complete the proof, it is sufficient to consider K = 2, with 1 < p1
c1

< p2
c2

, and to show that it

actually is better to try method 2 before method 1, i.e., to switch the order so that it is descending. Let

EV (1, 2) ≡ the expected payoff when trying the methods in the indicated order of 1 then 2

EV (2, 1) ≡ the expected payoff when trying the methods in the reverse order of 2 then 1.

Player

N

P

N

1− c1 − c2

succeed

−c1 − c2

fail

try method 2

−c1

give up

fail

1− c1

succeed

try method 1

0

give up

N

1− c2

succeed

P

−c2

give up

N

−c1 − c2

fail

1− c1 − c2

succeed

try method 1

fail

try method 2
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From the decision tree, it is straightforward to see that EV (1, 2) < EV (2, 1) if and only if

(p1 − c1) + (1− p1)(p2 − c2) < (p2 − c2) + (1− p2)(p1 − c1)

⇔ p1
c1

<
p2
c2

Thus the proof is complete.
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Part II. Textbook problems

6.C.1

We need to show that q > π implies D > α∗.

The decision maker’s problem is

max
α≥0

(1− π)u(w − αq) + πu(w − αq −D + α).

The FOC (if α∗ > 0) is

−q(1− π)u′(w − α∗q) + (1− q)πu′(w − α∗q −D + α∗) = 0

q(1− π)

π(1− q)
=
u′(w − α∗q −D + α∗)

u′(w − α∗q)
.

Suppose the insurance is not actuarially fair (i.e. q > π). Then

1 <
q(1− π)

π(1− q)
=
u′(w − α∗q −D + α∗)

u′(w − α∗q)

u′(w − α∗q) < u′(w − α∗q −D + α∗).

Hence, given than the individual is risk-averse (i.e. u′′ < 0), D > α∗

6.C.2

(a)

Suppose that an individual has a Bernoulli utility function u(·) with the quadratic form

u(x) = βx2 + γx,

where β < 0 and u(·) has its upper bound at −γ/2β.

The expected utility is

E[u] =

∫ −γ/2β
−∞

(βx2 + γx)dF (x)

= β

∫ −γ/2β
−∞

x2dF (x) + γ

∫ −γ/2β
−∞

xdF (x)

= βE[x2] + γE[x]

= γE[x] + βE[x]2 + βV ar[x]

= γ(mean of F ) + β(mean of F )2 + β(variance of F )
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(b)

We prove by contrast that U(·) is not compatible with any Bernoulli utility function. So suppose

there is a Bernoulli utility function u(·) such that U(F ) =
∫
u(x) dF (x) for every distribution F (·).

Let x and y be two amounts of money, G(·) be the distribution that puts probability one at x, and

H(·) that puts probability one at y. Then

u(x) = u(G) = (mean of G) + (variance of G) = x− 0 = x

u(y) = u(H) = (mean of H) + (variance of H) = y − 0 = y

Thus x ≥ y if and only if u(x) ≥ u(y). Hence u(·) is strictly monotone. Now let F0(·) be the

distribution that puts one probability on 0 and F (·) be the distribution that puts 1
2 on 0 and on

4
r > 0.Since the mean and the variance of F0(·) are 0, U(F0) = 0. The strict monotonicity of u(·) this

implies that U(F ) > 0. However, U(F ) = 2
r − r

4
r2 = − 2

r < 0, which is a contradiction. Hence U(·)is
not compatible with any Bernoulli utility function.

An example with two lotteries with the property requested in the exercise was given in the above

proof of incompatibility. (Note that if all we need to show were the incompatibility of U(·) and any

Bernoulli utility function, the equality u(x) = x obtained above would be sufficient to complete the

proof, because this implies risk neutrality, which contradicts the fact that the variance of F (·) is

subtracted in the definition of U(·))

6.C.18

(a)

• Arrow-Pratt coefficient of Absolute Risk Aversion

A(x) = −u
′′(x)

u′(x)

= −
− 1

4x
−3/2

1
2x
−1/2

=
1

2x

∣∣∣∣
x=5

=
1

10
.

• Arrow-Pratt coefficient of Relative Risk Aversion

R(x) = −xu
′′(x)

u′(x)

= x
1

2x
=

1

2
.
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(b)

• Certainty Equivalent

CE = u−1(E[u])

= u−1
(

1

2
u(16) +

1

2
u(4)

)
= u−1

(
1

2
4 +

1

2
2

)
= u−1(3)

= 9.

• Probability Premium

PP =
u(E[x])− E[u(x)]

u(xlarge)− u(xsmall)

=
u
(
1
216 + 1

24
)
− E[ 12u(16) + 1

2u(4)]

u(16)− u(4)

=

√
10− 3

2
≈ 0.08.

(c)

• Certainty Equivalent

CE = u−1(E[u])

= u−1
(

1

2
u(36) +

1

2
u(16)

)
= u−1

(
1

2
6 +

1

2
4

)
= u−1(5)

= 25.

⇒ The risk premium (i.e. E[x]−CE) is 1, the same as in part (b). Yet the expected wealth is

higher at 25 compared to 10 before. So we can say that the individual became less risk averse

as facing higher level of expected wealth. This is in accordance with the coefficient of absolute

risk aversion, A(x) = 1
2x , which is decreasing in x.

• Probability Premium

PP =
u(E[x])− E[u(x)]

u(xlarge)− u(xsmall)

=
u
(
1
236 + 1

216
)
− E[ 12u(36) + 1

2u(16)]

u(36)− u(16)

=

√
26− 5

2
≈ 0.05.
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⇒ The probability premium (PP) is, by definition, the excess in winning probability over fair

odds that makes the individual indifferent between a certain outcome and a gamble. Geomet-

rically, it is the height of the vertical ”gap” between the utility function and the straight line,

in relative terms of the whole range of utility values, and thus represents the curvature of the

utility function. So, the lower PP, the less concave and the less risk-averse. This aligns with

the interpretation above.

6.C.20

By definition, we have

u(CE) =
1

2
u(x+ ε) +

1

2
u(x− ε).

Differentiating with respect to ε, we get

u′(CE)
∂CE

∂ε
=

1

2
u′(x+ ε)− 1

2
u′(x− ε).

Again taking the derivative with respect to ε, we get

u′′(CE)

(
∂CE

∂ε

)2

+ u′(CE)
∂2CE

∂ε2
=

1

2
u′′(x+ ε) +

1

2
u′′(x− ε)

u′′(CE)

( 1
2u
′(x+ ε)− 1

2u
′(x− ε)

u′(CE)

)2

+ u′(CE)
∂2CE

∂ε2
=

1

2
u′′(x+ ε) +

1

2
u′′(x− ε)

∂2CE

∂ε2
=

[
1

2
u′′(x+ ε) +

1

2
u′′(x− ε)− u′′(CE)

( 1
2u
′(x+ ε)− 1

2u
′(x− ε)

u′(CE)

)2]/
u′(CE)

Taking the limit as ε→ 0, we have

lim
ε→0

∂2CE

∂ε2
= lim

ε→0

[
1

2
u′′(x+ ε) +

1

2
u′′(x− ε)− u′′(CE)

( 1
2u
′(x+ ε)− 1

2u
′(x− ε)

u′(CE)

)2]/
u′(CE)

= lim
ε→0

[
1

2
u′′(x) +

1

2
u′′(x)− u′′(CE)

( 1
2u
′(x)− 1

2u
′(x)

u′(CE)

)2]/
u′(CE)

= lim
ε→0

u′′(x)

u′(CE)

=
u′′(x)

u′(x)
= −rA(x),

where the second last inequality holds because limε→0 CE = x.
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