1 Utility

CRRA Utility $u(x|r) = \frac{x^{1-r}}{1-r}$, $r \in (-\infty, \infty)$

CARA Utility $u(x|a) = 1 - e^{-ax}$, a > 0

Certainty Equivalent $u(CE) = \int u(x) dF(x)$

Risk Premium $u(\int x dF(x) - RP) = \int u(x) dF(x)$

Absolute Risk Aversion $A(x) = -\frac{u''(x)}{u'(x)}$

Relative Risk Aversion $R(x) = xA(x) = \frac{-xu''(x)}{u'(x)}$

Mean-Variance Approximation

$$u(\overline{x}+h) = u(\overline{x}) + (x-\overline{x})u'(\overline{x}) + \frac{1}{2}(x-\overline{x})^2u''(\overline{x}) + R^3$$

$$Eu = u(\overline{x}) - \frac{1}{2}A(\overline{x})\sigma_L^2 + R^3$$

First Order Stochastic Dominance

G FOSDs F if $F(x) \ge G(x) \ \forall x$

Second Order Stochastic Dominance

G SOSDs F if $\mu_F = \mu_G$ and $\int_{-\infty}^x F(t)dt \ge \int_{-\infty}^x G(t)dt \ \forall x$

2 Bayes' Theorem

Basic Definitions

$$p(s) = \sum_{z \in Z} p(s, z)$$
 (prior prob. of state s)

$$p(z) = \sum_{s \in S} p(s, z)$$
 (message prob.)

$$p(z|s) = \frac{p(s, z)}{p(s)}$$
 (likelihood)

$$p(s|z) = \frac{p(s, z)}{p(z)}$$
 (posterior prob.)

Bayes theorem

(i)
$$p(s|z) = \frac{p(z|s)p(s)}{p(z)}$$

(ii)
$$p(s|z) = \frac{p(z|s)p(s)}{\sum_{t \in S} p(z|t)p(t)}$$

(iii)
$$\frac{p(s|z)}{p(t|z)} = \frac{p(z|s)p(s)}{p(z|t)p(t)}$$

(iv)
$$\ln \frac{p(s|z)}{p(t|z)} = \ln \frac{p(z|s)}{p(z|t)} + \ln \frac{p(s)}{p(t)}$$

Value of information

$$V_I = \sum_{z \in Z} p(z) \sum_{s \in S} p(s|z) [u_z^*(s) - u_0^*(s)]$$

3 Normal Form Games

Cookbook for NFG solutions

- (i) Get NFG from story or EFG (should be a complete contingency plan)
- (ii) Eliminate strictly dominated strategies (never-bestresponse are the candidates) and reduce the game. If only one profile remains, it is DS solution
- (iii) Iterate step(i) until no more dominated strategies, if only one profile remains, it is IDDS
- (iv) Inspect for mutual BR \longrightarrow These are pure NE

(v) Check for mixed NE, $\sigma_i \in B_i(\sigma_{-i})$, each $|subset| \ge 2$ of pure strategies for each player, write down the set of simultaneous equation

Payoff function of mixed strategies (2x2)

$$f_1(\sigma_1, \sigma_{-1}) = \sum_{i=1}^{2} p_i \sum_{j=1}^{2} q_j f_1(s_i, t_j)$$

where $\sigma_1 = p_1 s_1 + (1 - p_1) s_2, \sigma_{-1} = q_1 t_1 + (1 - q_1) t_2$

Formula for finding mixed strategies (2x2)

$$f_1(s_1, \sigma_{-1}) = f_1(s_2, \sigma_{-1})$$

$$f_2(t_1, \sigma_{-2}) = f_2(t_2, \sigma_{-2})$$

4 Extensive Form Games

Cookbook for solution of perfect information

(i) Convert each penultimate node ν into a terminal node

If ν is owned by player i, then player i choose the maximum payoff

If ν is owned by nature, then take expectation over payoff vectors

- (ii) Iterate step 1 until you reach the initial node
- (iii) Reconstruct each players strategy for her choices in step 1-2
- (iv) The resulting profile is a subgame perfect nash equilibrium (SPNE) $\,$
- (v) (For imperfect info)Find the smallest subgames that contain terminal nodes. Find all NE of that subgame. Replace the initial node of that subgame by a NE payoff vector. Iterate to a solution → get one SPNE. Then look on step 1 until all NEs in the minimal subgame have been used

5 BNE, PBE and Seq EQ

- (i) Beliefs μ_i at each info set for player i are consistent with common prior and likelihood from s_{-i}^* and own realized type $\bar{\theta}_i$ via Bayes
- (ii) At each info set, player i max's $E(u_i|\mu_i)$: $\forall \ s_i' \in S_i$ $E_{\theta_{-i}}[u_i(s_i^*(\bar{\theta}_i), s_{-i}^*(\theta_{-i}), \bar{\theta}_i)|\bar{\theta}_i] \ge E_{\theta_{-i}}[u_i(s_i', s_{-i}^*(\theta_{-i}), \bar{\theta}_i)|\bar{\theta}_i]$
- (iii) previous items hold in every subgame
- (iv) robust to sufficiently small trembles
- (i) and (ii) constitue a Bayesian NE
- (i) thru (iii) constitue a Perfect Bayesian NE
- (i) thru (iv) constitute a sequential equilibrium