Utility 1

CRRA Utility $u(x|r)=\frac{x^{1-r}}{1-r}$, $r\in(-\infty,\infty)$ CARA Utility $u(x|a)=1-e^{-ax}$, a>0Certainty Equivalent $u(CE) = \int u(x) dF(x)$ Risk Premium $u(\int x dF(x) - RP) = \int u(x) dF(x)$

Absolute Risk Aversion $A(x) = -\frac{u''(x)}{u'(x)}$

Relative Risk Aversion $R(x) = xA(x) = \frac{-xu''(x)}{u'(x)}$

Mean-Variance Approximation

$$u(\overline{x}+h) = u(\overline{x}) + (x-\overline{x})u'(\overline{x}) + \frac{1}{2}(x-\overline{x})^{2}u''(\overline{x}) + R^{3}$$

$$Eu = u(\overline{x}) - \frac{1}{2}A(\overline{x})\sigma_{L}^{2} + R^{3}$$

First Order Stochastic Dominance

 $F(x) > G(x) \ \forall x$

Second Order Stochastic Dominance

 $\mu_F = \mu_G \& \int_{-\infty}^x F(t)dt \ge \int_{-\infty}^x G(t)dt \ \forall x$

Bayes' Theorem $\mathbf{2}$

Basic Definitions

Basic Definitions
$$p(s) = \sum_{z \in Z} p(s, z)$$
 (prior prob. of state s) $p(z) = \sum_{s \in S} p(s, z)$ (message prob.) $p(z|s) = \frac{p(s,z)}{p(s)}$ (likelihood) $p(s|z) = \frac{p(s,z)}{p(z)}$ (posterior prob.) Bayes theorem

(i)
$$p(s|z) = \frac{p(z|s)p(s)}{p(z)}$$

(ii)
$$p(s|z) = \frac{p(z|s)p(s)}{\sum_{t \in S} p(z|t)p(t)}$$

(iii)
$$\frac{p(s|z)}{p(t|z)} = \frac{p(z|s)p(s)}{p(z|t)p(t)}$$

(iv)
$$\ln \frac{p(s|z)}{p(t|z)} = \ln \frac{p(z|s)}{p(z|t)} + \ln \frac{p(s)}{p(t)}$$

Value of information

$$V_I = \sum_{z \in Z} p(z) \sum_{s \in S} p(s|z) [u_z^*(s) - u_0^*(s)]$$

3 Normal Form Games

Cookbook for NFG solutions

- (i) Get NFG from story or EFG (should be a complete contingency plan)
- (ii) Eliminate strictly dominated strategies (never-bestresponse are the candidates) and reduce the game. If only one profile remains, it is DS solution
- (iii) Iterate step(i) until no more dominated strategies, if only one profile remains, it is IDDS
- (iv) Inspect for mutual BR \longrightarrow These are pure NE
- (v) Check for mixed NE, $\sigma_i \in B_i(\sigma_{-i})$: for each $|subset| \geq 2$ of remaining pure strategies for each player, solve the set of simultaneous equations

$$f_1(s_1, \sigma_{-1}) = f_1(s_2, \sigma_{-1})$$
$$f_2(t_1, \sigma_{-2}) = f_2(t_2, \sigma_{-2})$$

Payoff function of mixed strategies (2x2)
$$f_1(\sigma_1,\sigma_{-1}) = \sum_{i=1}^2 p_i \sum_{j=1}^2 q_j f_1(s_i,t_j)$$

where
$$\sigma_1 = p_1 s_1 + (1 - p_1) s_2$$
, $\sigma_{-1} = q_1 t_1 + (1 - q_1) t_2$

4 Extensive Form Games

Cookbook for games of perfect information

- (i) Convert each penultimate node ν into a terminal node: If ν is owned by player i, then use the branch with max payoff for i. If ν is owned by nature, then take expectation over payoff vectors
- (ii) Iterate step 1 until you reach the initial node
- (iii) Reconstruct each player's strategy for her choices in steps 1-2
- (iv) The resulting profile is a SPNE.
- (v) (For imperfect info) Find smallest subgames and their NE. Replace initial node of each subgame by (one of) its NE payoff vector. Iterate to a solution \longrightarrow get one SPNE. Then iterate using other subgame NE (if any) to get all other SPNE.

5 BNE, PBE and Seq EQ

- (i) Beliefs μ_i at each info set of i are consistent with common prior and likelihood from s_{-i}^* via Bayes
- (ii) At each info set player i of realized type $\bar{\theta}_i$ maximizes $E(u_i|\mu_i,\theta_i), \forall s_i \in S_i$, so

$$E_{\theta_{-i}}[u_i(s_i(\bar{\theta}_i), s_{-i}(\theta_{-i}), \bar{\theta}_i)|\bar{\theta}_i] \ge E_{\theta_{-i}}[u_i(s_i'(\bar{\theta}_i), s_{-i}(\theta_{-i}), \bar{\theta}_i)|\bar{\theta}_i]$$

- (iii) conditions (i, ii) hold in every subgame
- (iv) solution is robust to sufficiently small trembles
- (i) and (ii) constitute a Bayesian NE
- (i) thru (iii) constitute a Perfect Bayesian NE
- (i) thru (iv) constitute a sequential equilibrium

6 Repeated Games

Let the stage game be PD.

T finite: Only stage game NE are equilibria of the repeated game, i.e., always-defect is the unique NE.

T infinite: Cooperation can be sustained via trigger strategies as a NE of the repeated game if $d \geq d^*$ (discount factor).

Folk Thm: Any stage game feasible payoff vector that Pareto dominates a NE payoff is achievable as average payoff in a SPNE of the infinitely repeated game (via NE reversion strategies) if players are sufficiently patient.

7 Evolutionary Games

For payoff matrix $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, let $a_1 = a_{11} - a_{21}$ and $a_2 = a_{22} - a_{12}$ and $p^* = \frac{a_2}{a_1 + a_2}$. Then A is **HD type** if $a_1, a_2 < 0$. Then $p^* \in (0, 1)$ is a downcrossing, so it is the unique NE and EE: it is globally stable.

CO type if $a_1, a_2 > 0$. Then $p^* \in (0, 1)$ is an upcrossing, so it is an unstable NE that separates the basins of attraction of the two pure strategy NE (also EE).

DS type if a_1 and a_2 have opposite signs. Then $p* \notin$ (0,1) so there is no mixed NE. The first pure strategy is dominant if $a_1 < 0 < a_2$ and the second is dominant if $a_1 > 0 > a_2$. Evolutionary dynamics always push the state towards a dominant strategy from any initial condition.

Replicator dynamics: equate the growth rate of each strategy share to its relative payoff.

$$\dot{s}_i/s_i = w_i - \bar{w} = w_i \sum_j s_j - \sum_j w_j s_j = \sum_j (w_i - w_j) s_j$$

Bargaining and Cooperative 8

NBS: Allocation which maximizes the product of players utility gains relative to a threat point.

Characteristic Function: Cooperative games are defined by a (superadditive) characteristic function that specifies the worth $v(K) \in R$ of each coalition $K \subset N$. Convex game: $v(X) + V(Y) \le v(X \cap Y) + v(X \cup Y)$

Core: Coalition K blocks allocation u if $\sum_{i \in K} u_i < \infty$ v(K). That means they can do better by themselves. Core is all allocations unblocked by any $K \subset N$.

Shapley Value: SV is based on marginal contribution of each player to every K. The formula is, $\phi_i(v) =$ $\frac{1}{n!}\sum_{\rho}MC_i(\rho)$, where ρ is a permutation of $\{1,...,n\}$.

Imperfect Competition 9

Monopolist's FOC: $q_m[p'(q_m)] + p(q_m) = c'(q_m)$ **DWL:** $dwl = \int_{q_m}^{q_0} [p(z) - c'(z)] dz$

Bertrand: Firms simultaneously choose price to maximize profit: $\pi_j(p_j, p_k) = x_j(p_j, p_k)[p_j - c]$. The unique NE is $p_j = p_k = c, \pi_j = \pi_k = 0.$

Cournot: Firms simultaneously choose quantity to maximize profit: $\pi_j(q_j, q_k) = P(q_j + q_k)q_j - cq_j$. The FOC is: $P'(q_j + q_k)q_j + P(q_j + q_k) = c$. NE is $q_i = q_k, \pi_i = \pi_k$. The equilibrium price is between p_m and p_0 .

Hotelling: In the duopoly where firms choose location but not price and $p_1 = p_2 = p > c = c_1 = c_2$. The unique NE is for both firms to locate at middle point.

Adverse selection, Signalling, 10 Screening

Adverse Selection in Lemons model: Seller knows quality $\theta = value \ to \ buyer$. Seller values at $r(\theta)$. $\Theta(p) = \theta : r(p) \le p$ is the subset of sellers willing to sell at price p. Here a competitive eqm. is p^*, Θ^* s.t. $p^* = E(\theta | \theta \in \Theta^*)$ and $\Theta^* = \theta : r(p) \le p^*$

Signaling: N first chooses $\theta \in \Theta$; then Informed player ("(sender") sends message $m(\theta)$. Then Uninformed player ("(receiver") picks action a(m) after forming beliefs $\mu(\theta|m)$. PBE is $[m^*(\theta), a(\theta), \mu(\theta|m)]$ s.t.

1. $m^* \in argmax \ u_s(m, \ a^*(m), \ \theta) \ \forall \theta$

2. $a^*(m) \in argmax \ u_r(a)$ (pick a max Expected payoff)

3. $\mu(\theta|m)$ is consistent with Bayes given priors and $m^*(\theta)$

Screening: U-N-I, usually uninformed players offered menu to informed players. For example, buyers offer deferred contingent payment; self-selection of insurance customers to reveals some private information regarding riskiness.

P/A model 11

Effort observable: The Principal solves:

$$\min_{w(\pi)_{\pi\in\Pi}} \int_{\underline{\pi}}^{\overline{\pi}} w(\pi) f(\pi/e) d\pi$$
 s.t. [PC]

where [PC] is: $E(U_A) = \int_{\underline{\pi}}^{\overline{\pi}} u(w(\pi)) f(\pi/e) d\pi - g(e) \ge \overline{u}$ For A: $U_A(w, e) = u(w) - g(e)$, with outside option \overline{u} .

The solution is $w_e^* = u^{-1}(\overline{u} + g(e))$ for any given e, and Principal max's net profit over all e.

Effort not observable, Agent risk-neutral:

This means u''(w) = 0, we set u(w) = w

Guess: $w^* = \pi - \alpha$. Check the Principal gets

$$\max_{e \in e_H, e_L} \int_{\underline{\pi}}^{\overline{\pi}} \pi f(\pi/e) d\pi - (\overline{u} + g(e))$$

The Agents expected utility_is:

 $E(U_A)(w^*) = \max_{e \in e_H, e_L} \int_{\underline{\pi}}^{\underline{\pi}} \pi f(\pi/e) d\pi - (\alpha + g(e))$ The expected payoffs to both P and A are the same as in Case 1.

 $E(U_A) = \overline{u}$ and $\alpha = \int_{\underline{\pi}}^{\overline{\pi}} \pi f(\pi/e^*) d\pi - (\overline{u} + g(e^*))$ where e^* is the efficient effort level.

Effort not observable, Agent risk-averse:

The Principal solves, for each $e \in \{e_H, e_L\}$

$$\min E(w) = \int_{\pi}^{\overline{\pi}} w(\pi) f(\pi/e) d\pi$$
 s.t. [PC]and [IC]

where [PC] is: $E(U_A) = \int_{\pi}^{\overline{\pi}} u(w(\pi)) f(\pi/e) d\pi - g(e) \ge \overline{u}$ where [IC] is:

 $\int_{\underline{\pi}}^{\overline{\pi}} u(w(\pi)) f(\pi/e) d\pi - g(e) \geq \int_{\underline{\pi}}^{\overline{\pi}} u(w(\pi)) f(\pi/\tilde{e}) d\pi - g(\tilde{e})$ \overline{FOC} w.r.t $w(\pi)$ for $e = e_H$ is:

$$\frac{1}{u'(w(\pi))} = \gamma + \mu \left[1 - \frac{f(\pi/e_L)}{f(\pi/e_H)}\right]$$