Problem 1

(a)

Player I is incumbent and Player II is potential entrant.

(b)

$$E \in BR_{II} \Leftrightarrow p(-20) + (1-p)30 \ge 0$$

 $\Leftrightarrow 30 \ge 50p$
 $\Leftrightarrow p \le \frac{3}{5}$

That is, Player II (potential entrant) will choose to enter if $p \leq \frac{3}{5}$.

(c)

The first step of backward induction (BI) is shown in the game tree in part (a). The remaining normal form game (NFG) is

$$II = E = D \\ I = PF_PG_N = 35, -20 = 85, \underline{0} \\ NF_PG_N = \underline{40, 30} = \underline{100, 0}$$

So the SPNE is (NF_PG_N, E) with p = 0.

That is, for the incumbent, it is a (weakly) dominant strategy and subgame perfect (SGP) to not prepare (N), to fight if prepared (F_P) , not on the equilibrium path) and to go easy if not prepared (G_N) and the entrant's best response is to enter (E).

Problem 2

(a)

Simple BI gives $(Out_{P_LC_L}, Out_{P_HC_L}, In_{P_HC_H}, In_{P_LC_H})$ for entrant, thus $(P_H|C_H, P_L|C_L)$ for incumbent, with expected payoffs $(1, 1)_{C_H} \cdot (.2) + (3, 1)_{C_L} \cdot (.8) = (2.6, 1)$.

(b)

1) Try $(P_H|C_H, P_L|C_L)$.

So the beliefs can be updated as $\mu(C_H|P_H) = 1$ and $\mu(C_L|P_L)$.

Then $\{BR_2(P_H) = In, BR_2(P_L) = Out\}^{\dots(*)}$, but BR_1 to (*) includes $P_L|C_H$, breaking this equilibrium.

2) Try $(P_L|C_H, P_H|C_L)$.

So the beliefs can be updated as $\mu(C_H|P_L) = 1$ and $\mu(C_L|P_H)$.

Then $\{BR_2(P_H) = Out, BR_2(P_L) = In\}^{\dots(**)}$, but BR_1 to (**) includes $P_H|C_H$, breaking this equilibrium.

Thus, neither possible pooling strategy is part of a PBE.

(c)

1) Try $(P_H|C_H, C_L)$.

So the beliefs are $\mu(C_H|P_H) = .2$ (the prior) and $\mu(C_H|P_L) = q \in [0,1]$ (i.e. arbitrary).

Then, $BR_2(P_H) = Out$ and $BR_2(P_L) = In$ iff $q \ge .5$.

Then, $BR_1(C_H) = P_H$ and $BR_1(C_L) = P_H$ if $q \geq .5$.

So a pooling PBE is

$$\{m^* = (P_H|C_H, C_L); \mu(\cdot|P_H) = prior, \mu(C_H|P_L) = q \ge 0.5; a^*(P_L) = In, a^*(P_H) = Out\}.$$

2) Try $(P_L|C_H, C_L)$.

So the beliefs are $\mu(C_H|P_L) = prior$ and $\mu(C_H|P_H) = q \in [0,1]$ (i.e. arbitrary).

Then, $BR_2(P_L) = Out$ and $BR_2(P_H) = In$ iff $q \ge .5$.

Then, $BR_1(C_L) = P_L$ and $BR_1(C_H) = P_L$ if $q \ge .5$.

So again we have a pooling PBE as

$$\{m^* = (P_L|C_H, C_L); \mu(\cdot|P_L) = prior, \mu(C_H|P_H) = q \ge 0.5; a^*(P_L) = Out, a^*(P_H) = In\}.$$

Problem 3

(a)

$$w(\phi)=0$$
 $w(\{1\})=1$ $w(\{1,2\})=6$ $w(\{1,2,3\})=18$ $w(\{2\})=2$ $w(\{2,3\})=10$ $w(\{3\})=3$ $w(\{1,3\})=8$

The core is

$$x_1 \in [1, 8]$$

 $x_2 \in [2, 10]$
 $x_3 \in [3, 12].$

An example is (6,6,6).

(b)

ρ	MC_1	MC_2	MC_3
123	1	5	12
132	1	10	7
213	4	2	12
231	8	2	8
312	5	10	3
321	8	7	3
\sum	27	36	45
ϕ_i	9/2	6	15/2

The normalized Shapley values are (1/4, 1/3, 5/12).

(c)

Yes, since w is convex (supermodular), $\phi(w) \in Core(w)$.

(d)

The NBS solves

$$\max_{x_1, x_2, x_3} (x_1 - 1)(x_2 - 2)(x_3 - 3) \quad \text{s.t.} \quad x_1 + x_2 + x_3 = 18$$

$$\Leftrightarrow \max_{y_1, y_2, y_3} y_1 y_2 y_3 \quad \text{s.t.} \quad y_1 + y_2 + y_3 = 12$$

$$\Rightarrow \quad y_i = 4 \quad \text{for } i = 1, 2, 3$$

$$\Leftrightarrow \quad x_1 = 5, x_2 = 6, x_3 = 7$$

Problem 4

(a)

$$w_i = CE_i = \mu_i + 0.2\sigma_i^2 = \begin{cases} 1 + 0.2 \cdot 1^2 = 1.2 & (i = L) \\ 2 + 0.2 \cdot 2^2 = 2.8 & (i = H) \end{cases}$$

(b)

$$E(loss) = (.4)2 + (.6)1 = 1.4 = P$$

(c)

At P = 1.4, low risk people refuse (1.2 < 1.4), so only H-type people accept. Then,

$$E(profit) = 4000(P - E(loss|H)) = 4000(1.4 - 2) = -2400,$$

which is \$ 2.4 million loss.

(d)

Assuming a uniform price, insurers will serve only H types (as just seen) at the price P = 2 + .4 = 2.4.

(e)

With free entry, P gets down to zero-profit level, so P=2.

(f)

Use screening model and find the insurance company's participation constraint (PC) to separate contracts aimed at H-types and L-types. THe PC's imply that an upper bound in profit for each H-type customer is $(0.2)2^2 = 0.8$ and for each L-type customer is $(0.2)1^2 = 0.2$, or (0.2)6,000 + (0.8)4,000 = 44,000, which is \$ 44 million.

(g)

U is not equivalent to Eu, as explained in the Notes 1 (p.24+). It is equivalent up to second order. OVer a limited rantge, the function $u(x) = x - cx^2$ works. See also Problem 2 of Problem Set 1.

Problem 5

(a)

Yes, it is symmetric in the column player's payoff matrix is the transpose of the row player's.

(b)

For $x \in (-2,0)$, we have $p^* = \frac{a_2}{a_1+a_2} = \frac{x}{-2+x} \in (0,1)$, e.g., $p^* = 1/3$ for x = -1. It is downcrossing since $0 > a_1 = 3 - 5$ and $0 > a_2$, hence a unique, stable NE.

(c)

For $x \in (0, 10)$, $a_2 = x > 0 > a_1 = -2$, hence s_2 is a dominant strategy. Therefore, the pure NE s_2 is globally stable.

(d)

Since $a_1 = -2 < 0$, the CO case with two pure NE is not possible.

(e)

With x = 1, (s_1, s_2) is the stage game NE. To sustain cooperation, consider grim trigger strategy: play s_1 until someone first plays s_2 , then play s_2 ever after.

Playing s_1 (or trigger) against trigger yields stream 3, 3, 3, ... (*).

Playing s_2 against trigger yields stream $5, 1, 1, \dots$ (**).

(*) is BR $(\therefore (trigger, trigger) \in NE)$ iff

$$PV(*) \ge PV(**) \Leftrightarrow \frac{3}{1-\delta} \ge 5 + \frac{1}{1-\delta}$$
$$\Leftrightarrow 2 \ge 5(1-\delta)$$
$$\Leftrightarrow \delta \ge \frac{3}{5}.$$

If $\delta = \frac{q}{1+r}$, the the condition is $q \ge \frac{3}{5}(1+r)$.