ECON 204A: FALL 2016

PRODUCER THEORY, CONSUMER THEORY, AND DECISION THEORY PROBLEM SET 5

1. Consider the following profit function (which is differentiable as well as concave in (x,y)):

$$\widetilde{\pi}(x,y) = \alpha tx + ty - x^2 - y^2 - xy$$

where $t \in [0, \infty)$ is the parameter of interest, and $\alpha \in (-\infty, \infty)$ is a secondary parameter.

- (a) Suppose that y is fixed. The firm chooses x to maximize profits. Is the optimal choice of x increasing or decreasing in t? Does α play any role here?
- (b) Suppose that x is fixed. The firm chooses y to maximize profits. Is the optimal choice of y increasing or decreasing in t? Does α play any role here?
- (c) Now suppose the firm chooses both x and y, and that $\alpha \geq 0$. Solve for the optimal choices of x and y as a function of t when both x and y are choice variables. Discuss the monotonicity of x and y in t, as it depends on the value of α .
- (d) Interpret your answers in the context of the monotone comparative statics theorem.
- 2. Consider a monopolist who has three choice variables: output q, "marketing" m, and new equipment e. The cost of producing q units of output is given by c.q/e, where c is a constant. Equipment is purchased on a competitive market at price r. The cost of m units of marketing is $h(m;\theta)$, where θ is a parameter that increases the incremental cost of marketing (i.e., h is supermodular). Demand is given by P(q;m), so that revenue is q.P(q;m). Assume that P(q;m) is sufficiently differentiable.
 - (a) Write down conditions on the function P which guarantee that marketing increases marginal revenue.

Assume that your conditions from (a) hold through the rest of the problem. Note that the firm's profit function is given as follows:

$$q.P(q;m) - c.q/e - r.e - h(m;\theta)$$

- (b) Suppose that in the short run, equipment is fixed. How do the firm's short run choices of quantity and marketing change with the parameter θ ? With the fixed level of equipment?
- (c) How does the firm long run choice of equipment change with θ ?
- (d) In response to a 10% increase in θ , will the choices of quantity and marketing change by more in the short or in the long run? Sketch a proof of your answer.
- (e) How do the firm's long run profits change with r? Does your answer change with the parameter θ ? If so, in what direction? Interpret. (Note: You may want to first use the old standard techniques to get an idea, but the final answer must be derived using supermodularity.)