
Solution to Problem Set 1

1. For each function below, determine whether it is concave, quasiconcave,
or neither. (Assume x, y ≥ 0.)

a. f (x, y) = x
√
y

• Concavity

H (f(x)) =

(
0 1

2
1√
y

1
2
1√
y − 14y

− 3
4x

)
Since |H (f(x))| = − 14

1
y < 0 and f is C

2, then f is not concave.

• Quasiconcavity

Let f(x, y) = eln x+
1
2 ln y = eg(x,y).

Note that g(x, y) = lnx+ 1
2 ln y is a concave function.

Since f(x, y) is a monotone transformation of g(x, y), then f(x, y) is quasi-
concave.

b. f (x, y) = u (x) + v (y) , with u (x)′′ ≤ 0 and v′′ (y) ≤ 0 for all x, y ≥ 0.

H (f (x, y)) =

(
u′′(x) 0
0 v′′(y)

)
We know that u′′(x) ≤ 0 and v′′ (y) ≤ 0. In addition,

|H (f (x, y))| = u′′(x)v′′(y) ≥ 0.

Then f is concave – and also quasiconcave.

c. f (x) = 2x− (x+ 1)−1 + (x+ 1)−2, x > 0

f ′′(x) =

{
≥ 0 if 0 < x ≤ 2
< 0 if x > 2

Then f is not concave. However, since f ′(x) ≥ 0 ∀x > 0, then f is quasi-
concave.

2. h(x) = x3 + x, g(x) = −2x, x ∈ R

• h is increasing, then it is quasiconcave.

• g is decreasing, so it is quasiconcave.

• We next show that h(x) + g(x) = x3 − x is not quasiconcave. Let m(x) =
x3 − x and consider two points: x = 1 and x′ = − 12 .
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1. • Notice x′′ = 2
3x +

1
3x
′ = 1

2 is a convex combination of x and x′.
However,

m

(
1

2

)
= −3

8
< min

{
m (1) ,m

(
−1
2

)}
= 0.

Then, function m(x) is not quasiconcave

3. f : Rn → R is concave, g : R → R is increasing and concave. We need to
show that h(x) = g(f(x)) is concave.

Let x, x′ ∈ Rn and consider λ ∈ [0, 1]. Then

h(λx+ (1− λ)x′) = g(f (λx+ (1− λ)x′) ≥ g (λf (x) + (1− λ)f (x′))︸ ︷︷ ︸
by concavity of f and the fact that g is increasing

≥ λg(f(x)) + (1− λ)g(f(x′))︸ ︷︷ ︸
by concavity of g

= λh(x) + (1− λ)h(x′)

The result follows since λ was arbitrarily selected.

4. We know that f : R → R is a strictly increasing function and u : X → R
represents � .
We need to show that v(x) = f (u (x)) is also a utility function that
represents � .
Dy definition, "u represents �" means that ∀x, y ∈ X

x � y ⇐⇒ u(x) ≥ u(y).

The result follows because f is strictly increasing and thereby f−1 is also
strictly increasing. Since f is strictly increasing

u(x) ≥ u(y)⇒ f (u (x)) ≥ f (u (y)) .

Since f−1 is also strictly increasing

f (u (x)) ≥ f (u (y))⇒ u(x) ≥ u(y).

Then,

v(x) = f (u (x)) ≥ f (u (y)) = v(y)⇔ u(x) ≥ u(y)∀x, y ∈ X.

5. We need to show that f (x, y) = min {x, y} is a concave function.
Let (x, y), (x′, y′) ∈ R2 and λ ∈ [0, 1]. We need to prove that

min {λx+ (1− λ)x′, λy + (1− λ)y′} ≥ λmin {x, y}+ (1− λ)min {x′, y′} .
(1)

There are 4 cases to consider
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(a) x ≥ y and x′ ≥ y′

(b) x ≤ y and x′ ≤ y′

(c) x > y and x′ < y′

(d) x < y and x′ > y′

In fact, by symmetry, we only need to consider two cases. For instance, (a)
and (c).
Let us consider first case (a). Then,

min {λx+ (1− λ)x′, λy + (1− λ)y′} = λy + (1− λ)y′

λmin {x, y}+ (1− λ)min {x′, y′} = λy + (1− λ)y′.

Then (1) holds.
Let us consider next case (c). Assume (without loss of generality) that

λx+ (1− λ)x′ ≥ λy + (1− λ)y′.

Then,
min {λx+ (1− λ)x′, λy + (1− λ)y′} = λy + (1− λ)y′.

In addition,
min {x, y} = y and min {x′, y′} = x′

The rest of the proof follows by contradiction. Then, assume

λy + (1− λ)y′ < λy + (1− λ)x′.

This implies that x′ > y′, which contradicts the fact that x′ < y′.
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